PT exercices sur les surfaces et courbes spatiales

2024/2025

feuille No 14

rg

- a) Donner un point et un vecteur directeur de la droite \mathscr{D} d'équations cartésiennes $\begin{cases} x = 4 \\ y = 3 3z \end{cases}$
 - **b)** Trouver les points réguliers de la surface *S* d'équation $xy = z^3$.
 - c) Donner les plans tangents à S qui contiennent \mathcal{D} .

* 2

- a) Donner le plan tangent au point de paramètre (1, 1) à la surface S d'équations paramétriques $\begin{cases} x = u^2 \\ y = u v \\ z = 2u + v \end{cases}$
- **b)** Montrer qu'une équation cartésienne de S est $4x^2 + 4xy + y^2 xz^2 = 0$.
- c) Montrer que S est une surface réglée.

rg

- Soit (Γ) la courbe d'équations cartésiennes $\begin{cases} z^2 xy + 1 = 0 \\ x y + z = 1 \end{cases}$.
 - **a)** Donner un vecteur directeur de la tangente \mathcal{T}_0 à (Γ) en M_0 : (x_0, y_0, z_0) .
 - **b)** Donner l'équation cartésienne de la projection orthogonale de (Γ) sur le plan z=0 et déterminer la nature de la courbe obtenue.
- * On considère les droites \mathcal{D}_1 et \mathcal{D}_2 d'équations cartésiennes respectives : $\begin{cases} x = y \\ z = 1 \end{cases}$ et $\begin{cases} x = -y \\ z = -1 \end{cases}$.
 - a) Soit M un point de l'espace euclidien, et \mathscr{D} la droite $(A; \vec{u})$. Soit H le projeté orthogonal de M sur \mathscr{D} , exprimer \overrightarrow{AH} en fonction de \overrightarrow{AM} et de \vec{u} . En déduire que si d est la distance de M avec la droite \mathscr{D} , alors $d^2 = \overrightarrow{AM}^2 - \frac{(\overrightarrow{AM} \cdot \vec{u})^2}{\|u\|^2}$.
 - b) Soit M:(x,y,z), calculer les distances respectives d_1 et d_2 de M avec les droites \mathcal{D}_1 et \mathcal{D}_2 . En déduire que les points équidistants de \mathcal{D}_1 et \mathcal{D}_2 forment une surface (PH) d'équation cartésienne 2z = xy.
 - c) Montrer que (PH) est réglée.

*

- Soit $(a, b) \in (\mathbb{R}_+^*)^2$. On considère l'hélice droite \mathcal{H} de paramétrage $\begin{cases} x = a \cos t \\ y = a \sin t \\ z = b t \end{cases}$
 - a) Déterminer un paramétrage de la surface réglée \mathcal{R} engendrée par les tangentes à \mathcal{H} .
 - **b)** Soit $m \in \mathbb{R}^*$, déterminer la section de \mathcal{R} par le plan z = m.b.

*

- **6** On considère la surface (H_2) d'équation cartésienne $x^2 + y^2 z^2 = -1$.
 - a) Montrer que (H_2) est une surface de révolution d'axe O_z , dont on précisera les méridiennes.
 - **b)** Montrer que le paramétrage $\begin{cases} x = \operatorname{sh}(u) \cos v \\ y = \operatorname{sh}(u) \sin v & \text{définit une partie de } (H_2). \\ z = \operatorname{ch}(u) \end{cases}$
 - Tous les points de (H_2) sont-ils ainsi décrits?
 - c) Déterminer une équation cartésienne du plan tangent à (H_2) au point M_0 : (x_0, y_0, z_0) .

- * Soit $a \in \mathbb{R}_+^*$, et la surface \mathscr{P} d'équation cartésienne $a(x^2 + y^2)z = (x^2 y^2)xy$.
 - a) Préciser la nature des isométries qui à M:(x,y,z) associent respectivement $M_1:(y,-x,z), M_2:(y,-x,z)$ et $M_3:(y,x,-z)$.

Montrer que M appartient à $\mathcal P$ si, et seulement si M_k appartient à $\mathcal P$ pour $k \in [[1,3]]$. En déduire les symétries de la surface $\mathcal P$.

- **b)** Si $\lambda \in \mathbb{R}$, déterminer la section de \mathscr{S} par le plan d'équation cartésienne $y = \lambda x$ (on étudiera en particulier le cas $\lambda = \pm 1$).
- c) Soit f la fonction définie par $f(x,y) = \frac{(x^2 y^2)xy}{x^2 + y^2}$ si $(x,y) \neq (0,0)$, et f(0,0) = 0. On rappelle que f admet deux dérivées partielles nulles en (0,0).

Quel est le plan tangent Π_0 à \mathcal{P} au point (0,0,0)? Quel est l'intersection de Π_0 avec \mathcal{P} ?

- d) Déterminer quatre droites incluses dans \mathscr{P} .
- e) Déterminer l'intersection de \mathcal{P} avec le cylindre de révolution d'axe O_z et de rayon 1.
- * Soit $\lambda \in \mathbb{R}$, on considère la surface (T_{λ}) d'équation cartésienne $x^3 + y^3 + z^3 3x$ y $z = \lambda^3$.
 - a) Déterminer les points singuliers de (T_{λ}) .
 - **b)** Soit $\lambda \in \mathbb{R}$, déterminer une valeur de $\alpha \in \mathbb{R}$ telle que $M_{\lambda} : (\alpha \lambda, -\alpha \lambda \alpha \lambda,) \in (T_{\lambda})$. Écrire une équation du plan tangent en M_{λ} .
 - c) Effectuer le changement de repère orthogonal de matrice $P = \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{3} & 1 & \sqrt{2} \\ -\sqrt{3} & 1 & \sqrt{2} \\ 0 & -2 & \sqrt{2} \end{pmatrix}$, et montrer que l'équation de (T_{λ}) dans le nouveau repère devient $(x_1^2 + y_1^2)z_1 = 2\lambda^3$.
 - **d)** En déduire que (T_{λ}) est une surface de révolution d'axe dirigé par (1,1,1), et préciser les méridiennes de (T_{λ}) .
- ** 9 On considère le cercle \mathscr{C} de centre A:(2,0,0) et de rayon 1, inclus dans le plan vertical y=0.
 - a) Déterminer un paramétrage du tore \mathcal{T} obtenu par révolution de \mathcal{C} autour de l'axe O_z .
 - **b)** Montrer qu'une équation cartésienne de \mathcal{T} est $(x^2 + y^2 + z^2 5)^2 + 16z^2 = 16$.
 - c) Montrer que $B: \left(\frac{3}{2}, 0, \frac{\sqrt{3}}{2}\right)$ appartient à \mathcal{T} . Écrire une équation du plan Π tangent à \mathcal{T} en B.
 - **d)** Montrer que $M \in \Pi \cap \mathcal{T}$ si, et seulement si $\frac{1}{9}(4x^2 + 3y^2 + 6y 9)(4x^2 + 3y^2 6y 9) = 0$ et en déduire que $M \in \Pi \cap \mathcal{T}$ se compose de deux ellipses (qui sont en fait des cercles, appelés cercles de VILLARCEAU).