PT exercices sur le calcul différentiel

2024/2025

feuille Nº 13

- * Soit $f: \mathbb{R} \to \mathbb{R}$, une fonction de classe \mathscr{C}^p , $p \in \mathbb{N}^*$; on pose $\Delta = \{(x,y) \in \mathbb{R}^2, x = y\}$ et on considère la fonction T définie de \mathbb{R}^2 dans \mathbb{R} par $T(x,y) = \frac{f(x) f(y)}{x y}$ si $x \neq y$ et T(x,x) = f'(x). Montrer que T est de classe \mathscr{C}^{p-1} .

 Indication: montrer que $T(x,y) = \int_0^1 f'(t\,x + (1-t)y) \,dt$.
- * 2 Soit f la fonction définie sur \mathbb{R}^2 par f(0,0) = 0 et $f(x,y) = \frac{x^3y}{x^2 + y^2}$ si $(x,y) \neq (0,0)$.
 - a) f est-elle continue en (0,0)?
 - **b)** Montrer que f admet en tout point des dérivées partielles que l'on déterminera. Calculer la différentielle de f en (0,0).
 - c) Montrer que f n'est pas \mathscr{C}^2 en (0,0).
- * **3** a) Montrer que $g: x \mapsto \int_0^x e^{-t^2} dt$ est de classe \mathscr{C}^1 sur \mathbb{R} et calculer sa dérivée.
 - **b)** Soit f définie sur \mathbb{R}^2 par $f(x,y) = \exp(x^2 y^2)$; exprimer $F(x) = \int_0^x f(x,t) dt$ en fonction de g, montrer que F est de classe \mathscr{C}^1 sur \mathbb{R} et que $F'(x) = f(x,x) + \int_0^x \frac{\partial f}{\partial x}(x,t) dt$.
 - c) Généraliser cette propriété à toute fonction f continue sur \mathbb{R}^2 .

 Indication: poser $\Phi(x,y) = \int_x^y f(x,t) dt$, calculer ses dérivées partielles, et remarquer que $F(x) = \Phi(x,x)$.
- * Soit les ensembles $K = \{(x,y) \in \mathbb{R}^2, 0 \le x \le \pi \text{ et } 0 \le y \le \pi\}$ et $T = \{(x,y) \in T, 0 < y < x\}$. On considère la fonction F définie par $F(x,y) = x(\pi - y)$ pour $0 \le x \le y \le \pi$ et $F(x,y) = y(\pi - x)$ pour $0 \le y \le x \le \pi$.
 - a) Représenter K et T.
 - **b)** La fonction *F* admet-elle des extremums locaux sur *T* ?
 - c) La fonction F admet-elle un minimum sur K? Un maximum? Si oui, déterminer leur valeur.
- Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y) = \frac{1}{x^2 + y^2 2x + 2}$.
 - a) $P_v: x \mapsto x^2 + y^2 2x + 2$ admet-il un minimum sur \mathbb{R} ?
 - **b)** Calculer le gradient de f.
 - c) Montrer que f admet un maximum global, mais pas de minimum global.
- Déterminer les extremums de la fonction f définie sur \mathbb{R}^2 par $f:(x,y)\mapsto x^4+y^4-2(x-y)^2$ et donner leur nature.
- On étudie $f:(x,y) \mapsto x^2y(4-x-y) \operatorname{sur} \Delta = \{(x,y) \in \mathbb{R}^2, x \ge 0, y \ge 0, x+y \le 4\}.$
 - a) Tracer Δ .
 - **b)** Trouver tous les extremums locaux et globaux de f sur Δ .
- * On pose $f(x, y) = x \ln(y) y \ln(x)$ pour $(x, y) \in (\mathbb{R}_*^+)^2$.

 Déterminer les extremums de f sur $(\mathbb{R}_*^+)^2$.

9 Résoudre les équations différentielles aux dérivées partielles :

$$(E_1): \quad -2\frac{\partial f}{\partial x} + 3\frac{\partial f}{\partial y} = 2x + 2y \qquad (E_2): \quad \frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = f(x, y)$$

en utilisant le changement de variables (u, v) = (x + y, 3x + 2y).

- * **10** Trouver les fonctions f de classe \mathscr{C}^2 vérifiant $\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} = 16x y$ Indication: on pourra envisager le changement de variables u = x + y, v = x y.
- * 11 On note $U = \mathbb{R}^2 \setminus \{(0,0)\}$; on donne $p \in \mathbb{R}$ et $g \in \mathscr{C}^2(U,\mathbb{R})$. Trouver les fonctions $f \in \mathscr{C}^2(\mathbb{R}_+^*,\mathbb{R})$ définies par $\forall (x,y) \in U, g(x,y) = f(x^2 + y^2)$, qui vérifient $(E) : \forall (x,y) \in U, \quad \frac{\partial^2 g}{\partial x^2}(x,y) + \frac{\partial^2 g}{\partial y^2}(x,y) = (x^2 + y^2)^p$.
- ** 12 Soit le changement de variables défini par $\phi(x,y) = (u,v) = (x^2 + y^2, 2xy)$.
 - **a)** Montrer que ϕ définit une application bijective de classe \mathscr{C}^1 de $\Omega = \{(x,y) \in \mathbb{R}^2, x > y\}$ dans $V = \{(u,v) \in \mathbb{R}^2, u > |v|\}.$
 - **b)** Soit f de classe \mathscr{C}^1 tel que $f = g \circ \phi$. Montrer que f vérifie $y \frac{\partial f}{\partial x}(x,y) - x \frac{\partial f}{\partial y}(x,y) = 2(y^2 - x^2)f(x,y)$ si, et seulement si, g vérifie une équation aux dérivées partielles à déterminer.
 - c) Résoudre cette équation et en déduire f.