Exercices sur les intégrales à paramètre (solutions)

Pour $n \in \mathbb{N}^*$, on pose $I_n = \int_0^1 \frac{\mathrm{d}u}{1+u^n}$; on considère la fonction définie sur \mathbb{R}_+^* par $F_1(x) = \int_0^x \frac{\mathrm{d}t}{t^n+x^n}$.

- a) Montrer que $0 \le 1 I_n \le \frac{1}{n+1}$ et en déduire la limite de I_n quand n tend vers $+\infty$.
- **b)** Effectuer dans l'intégrale $F_1(x)$ le changement de variable t = x u; en déduire que $F_1(x) = x^{1-n} I_n$. Que vaut $\lim_{n\to+\infty} F_1(x)$?

Réponse:

B

$$\mathbf{a)} \ \ 1 - I_n = \int_0^1 1 - \frac{1}{1 + u^n} \mathrm{d}u = \int_0^1 1 - \frac{1}{1 + u^n} \mathrm{d}u = \int_0^1 \frac{u^n}{1 + u^n} \mathrm{d}u.$$
 Comme $0 \le \frac{u^n}{1 + u^n} \le u^n$, par intégration :
$$0 \le 1 - I_n \le \int_0^1 u^n \mathrm{d}u = \frac{1}{n + 1} \mathrm{donc} \lim_{n \to +\infty} 1 - I_n = 0 \text{ (théorème d'encadrement)} : \lim_{n \to +\infty} I_n = 1$$
.

b) Le changement de variable linéaire t = xu transforme l'intervalle [0, x] en [0, 1], et dt = xdu donc $F_1(x) = \int_0^1 \frac{x}{x^n + x^n u^n} du = \frac{x}{x^n} \int_0^1 \frac{du}{1 + u^n} donc \quad \boxed{F_1(x) = x^{1-n} I_n}$

Comme
$$\lim_{n \to +\infty} I_n = 1$$
, $F_1(x) \underset{n \to +\infty}{\sim} x^{1-n}$ donc $\lim_{n \to +\infty} F_1(x) = \begin{cases} 0 & \text{si } x > 1 \\ 1 & \text{si } x = 1 \\ +\infty & \text{si } 0 \le x < 1 \end{cases}$

2 Soit la fonction définie par $F_2(x) = \int_0^{+\infty} \frac{\arctan(xt) - \arctan t}{t} dt$; B

- a) Montrer que cette fonction est définie pour x > 0. *Indications*: en 0, chercher un équivalent de $\arctan(xt)$ – $\arctan t$ quand t tend vers 0; en $+\infty$, utiliser $\arctan \frac{1}{u} = \frac{\pi}{2} - \arctan u$.
- **b)** Étudier la dérivabilité de F_2 sur \mathbb{R}_+^* et le signe de $F_2(x)$ pour x > 0.
- c) Calculer $F_2(x)$ puis $F_2(x)$ pour x > 0 à l'aide des fonctions usuelles

Réponse:

a) Il s'agit de montrer la convergence de l'intégrale $F_2(x)$ pour x > 0.

Pour x > 0, $g_x : t \mapsto \frac{\arctan(xt) - \arctan t}{t}$ est continue sur $]0, +\infty$, et de signe constant, égale à celui

de x-1; on peut remarquer que $g_1=0$.

De plus, $g_x(t)=\frac{xt+o_{t\to 0}(t)-(t+o_{t\to 0}(t))}{t}=\frac{(x-1)t+o_{t\to 0}(t)}{t}=x-1+o_{t\to 0}(1)$, donc g_x est prolongeable par continuité en 0 en posant $g_x(0)=x-1$: g_x est intégrable sur]0,1].

Enfin, en utilisant l'identité arctan $u = \frac{\pi}{2} - \arctan \frac{1}{u}$ (pour u > 0):

 $g_x(t) = \frac{1}{t} \left(\frac{\pi}{2} - \arctan \frac{1}{xt} - \left(\frac{\pi}{2} - \arctan \frac{1}{t} \right) \right) = \frac{1}{t} \left(\arctan \frac{1}{t} - \arctan \frac{1}{xt} \right) \underset{t \to +\infty}{\sim} \frac{x-1}{xt^2}$ d'après le calcul

Comme $g_x(t) = \mathcal{O}_{t \to +\infty} \left(\frac{1}{t^2} \right)$, g_x est intégrable sur $[1, +\infty[$.

b) Pour tout t > 0, $x \mapsto g_x(t)$ est dérivable sur \mathbb{R}_+^* et $\frac{\partial}{\partial x} \left(\frac{\arctan(xt) - \arctan t}{t} \right) = \frac{1}{t} \left(\frac{t}{1 + x^2 t^2} \right) = \frac{1}{t} \left(\frac{t}{1 + x^2 t^2} \right)$ $\frac{1}{1+r^2t^2}$, qui est clairement continue par morceaux sur]0, $+\infty$ [.

 $\sup_{x>0} \left| \frac{\partial g_x(t)}{\partial x} \right| = 1, \text{ ce qui sonne le glas de toute } hypothèse de domination } \operatorname{sur} \mathbb{R}_+^*.$

Cependant, soit [a, b] un segment de \mathbb{R}_+^* : b > a > 0, alors $\sup_{x \in [a, b]} \left| \frac{\partial g_x(t)}{\partial x} \right| = g_a(t) = \frac{1}{1 + a^2 t^2}$, fonction intégrable sur \mathbb{R}_+^* : **hypothèse de domination** sur tout segment de \mathbb{R}

Réponse : F_2 est donc dérivable sur \mathbb{R}_+^* , et $\forall x \in \mathbb{R}_+$, $F_2'(x) = \int_0^1 \frac{\mathrm{d}t}{1 + x^2 t^2}$.

Enfin, comme arctan est croissante sur \mathbb{R}_+ , arctan(xt) – arctan(t) a le signe de x – 1, donc par intégration $F_2(x)$ a le signe de x-1.

c) Un changement de variable linéaire et strictement croissant u = x t donne, pour x > 0:

$$F_2'(x) = \int_0^{+\infty} \frac{1}{1+u^2} \frac{\mathrm{d}u}{x} = \frac{1}{x} [\arctan(u)]_0^{+\infty} = \frac{\pi}{2x},$$

puis, en tenant compte de la valeur $F_2(1) = 0$: $F_2(x) = \frac{\pi}{2} \ln x$.

- On considère la fonction définie sur \mathbb{R}_+ par $F_3(x) = \int_0^{+\infty} \frac{e^{-tx}}{1 + t} dt$. 13
 - **a)** Montrer que F_3 est \mathscr{C}^1 sur \mathbb{R}_+^* .
 - **b)** Montrer: $\lim_{x \to +\infty} F_3(x) = 0$ et $\forall x \in \mathbb{R}_+^*$, $F_3'(x) F_3(x) = \frac{-1}{x}$. En déduire que $\forall x \in \mathbb{R}_+^*$, $F_3(x) = e^x \int_{-\infty}^{+\infty} \frac{e^{-t}}{t} dt$.
 - c) À l'aide d'une intégration par parties, montrer que $\forall x \in \mathbb{R}_+^*$, $xF_3(x) = 1 \int_0^{+\infty} \frac{\mathrm{e}^{-tx}}{(1+t)^2} \, \mathrm{d}t$ et en déduire un équivalent de $F_3(x)$ en $+\infty$.

Réponse:

a) $f_3(x,\cdot): t \mapsto f_3(x,t) = \frac{\mathrm{e}^{-tx}}{1+t}$ est continue sur \mathbb{R}_+ pour tout $x \in \mathbb{R}_+$, et $f_3(\cdot,t): x \mapsto f_3(x,t) = \frac{\mathrm{e}^{-tx}}{1+t}$ est continue sur \mathbb{R}_+ pour tout $t \in \mathbb{R}_+$.

De plus, si x > 0, alors $0 \le \frac{e^{-tx}}{1+t} \le e^{-tx}$ donc $f_3(x, \cdot)$ est intégrable sur \mathbb{R}_+ .

Soit $(a,b) \in (\mathbb{R}_+^*)^2$, b > a > 0, alors $\forall x \in [a,b]$, $\forall t \in \mathbb{R}_+$, $0 \le \frac{e^{-tx}}{1+t} \le e^{-at}$, et $t \mapsto e^{-at}$ est intégrable $\operatorname{sur} \mathbb{R}$: ceci constitue une *hypothèse de domination* pour f_3 sur

De plus, $f_3(\cdot, t)$ est \mathscr{C}^1 sur \mathbb{R}_+ pour tout $t \in \mathbb{R}_+$, et $\frac{\partial}{\partial x} \left(\frac{e^{-tx}}{1+t} \right) = \frac{-te^{-tx}}{1+t}$ est continue sur \mathbb{R} ;

Soit $(a,b) \in (\mathbb{R}_+^*)^2$, b > a > 0, alors $\forall x \in [a,b]$, $\forall t \in \mathbb{R}_+$, $0 \le \frac{t \operatorname{e}^{-tx}}{1+t} \le \operatorname{e}^{-at}$, et $t \mapsto \operatorname{e}^{-at}$ est intégrable sur \mathbb{R} : ceci constitue une *hypothèse de domination* pour $\frac{\partial f_3}{\partial x}$ sur tout segment de \mathbb{R}_+^* .

$$F_3 \operatorname{est} \mathscr{C}^1 \operatorname{sur} \mathbb{R}_+^*, \operatorname{et} F_3'(x) = \int_0^{+\infty} \frac{-t \operatorname{e}^{-tx}}{1+t} dt.$$

b) Pour $t \ge 0$ et x > 0, $0 \le \frac{e^{-tx}}{1+t} \le e^{-tx}$ donc par intégration $0 \le F_3(x) \le \int_0^{+\infty} dt = \frac{1}{x}$. Le théorème d'encadrement permet d'en déduire que $\overline{\lim_{x \to +\infty} F_3(x)} = 0$.

D'après le calcul plus haut, $F_3'(x) - F_3(x) = \int_0^{+\infty} \frac{e^{-tx}}{1+t} - \frac{te^{-tx}}{1+t} dt = \int_0^{+\infty} -e^{-tx} dt = \frac{-1}{x} \text{ pour } x > 0.$

 $t \mapsto \frac{\mathrm{e}^{-t}}{t}$ est positive et un $o_{+\infty}(\mathrm{e}^{-t})$, donc intégrable sur \mathbb{R}_+^* ; donc $\varphi : x \mapsto \mathrm{e}^x \int_x^{+\infty} \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t$ existe.

 $\varphi'(x) = e^x \int_{x}^{+\infty} \frac{e^{-t}}{t} dt + e^x \left(-\frac{e^{-x}}{x} \right) = \varphi(x) - \frac{1}{x} \operatorname{donc} \varphi \text{ est une solution de } y' - y = \frac{-1}{x}.$

De plus, comme $0 \le \frac{1}{t} \le \frac{1}{x}$ pour $t \ge x$, $0 \le \varphi(x) \le e^x \frac{1}{x} \int_x^{+\infty} e^{-t} dt = \frac{1}{x}$ donc $\lim_{x \to +\infty} \varphi(x) = 0$.

On peut donc identifier F_3 et φ comme unique solution de $y'-y=\frac{1}{x}$ qui admet une solution finie en $+\infty$.

c) Posons en vue d'une intégration par parties : $\begin{cases} u'(t) = xe^{-xt} \\ v(t) = \frac{1}{1+t} \end{cases} ; \begin{cases} u'(t) = -e^{-xt} \\ v(t) = \frac{-1}{(1+t)^2} \end{cases} .$

Comme $uv(t) = \frac{-e^{-xt}}{1+t}$ admet une limite (nulle) en $+\infty$, on peut écrire que

$$xF_3(x) = \int_0^{+\infty} u'v(t) dt = \left[\frac{-e^{-xt}}{1+t}\right]_0^{+\infty} - \int_0^{+\infty} uv(t) dt = 1 - \int_0^{+\infty} \frac{e^{-tx}}{(1+t)^2} dt.$$

Comme $0 \le \frac{e^{-tx}}{(1+t)^2} \le \frac{e^{-tx}}{1+t}$ pour tout $t \in \mathbb{R}$, $\lim_{x \to +\infty} \int_0^{+\infty} \frac{e^{-tx}}{(1+t)^2} dt = 0$ donc $\lim_{x \to +\infty} xF_3(x) = 1$ et

- $\boxed{\mathbf{4}}$ On considère les fonctions définies par $f_4(x,t) = \frac{1}{(1+t^2)(1+t^x)}$ et $F_4(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+t^x)}$.
 - a) En remarquant que $0 \le \frac{1}{1+t^x} \le 1$ pour tous $(t,x) \in \mathbb{R}_+ \times \mathbb{R}$, montrer l'existence de $F_4(x)$ pour tout réel x. Montrer que F_4 est continue sur \mathbb{R} .
 - **b)** Montrer l'existence de l'intégrale $A = \int_0^{+\infty} \frac{|\ln t|}{1+t^2} dt$. Montrer que F_4 est \mathcal{C}^1 sur \mathbb{R} , et exprimer $F_4'(x)$ comme une intégrale. Indication : on pourra utiliser les inégalités $0 \le \frac{t^x}{1+t^x} \le 1$ et $0 \le \frac{1}{1+t^x} \le 1$, et la convergence de A.
 - c) À l'aide du changement de variable $u = \frac{1}{t}$, trouver une expression simple de $F_4'(x)$. En déduire la valeur $\text{des intégrales } F_4(2) = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^2} \text{ et } F_4(\pi) = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+t^\pi)}.$

a) $0 \le \frac{1}{1+t^x} \le 1$ donc $0 \le f_4(x) \le \frac{1}{1+t^2}$, ce qui garantit l'intégrabilité de la fonction f_4 sur \mathbb{R}_+ .

Ceci constitue également une *hypothèse de domination*, donc comme $x \mapsto \frac{1}{1+t^x}$ est continue sur \mathbb{R} pour tout $t \in \mathbb{R}_+$, F_4 est continue sur \mathbb{R} .

b) $h: t \mapsto \frac{|\ln t|}{1+t^2}$ est continue et positive sur \mathbb{R}_+^* .

Pour $t \in]0;1]$, $h(t) \le \ln t$ donc h est intégrable sur]0;1].

De plus $h(t) = \mathcal{O}_{+\infty}\left(\frac{1}{t^{3/2}}\right)$, donc h est intégrable sur $[1; +\infty[$.

Ainsi
$$A = \int_0^{+\infty} \frac{|\ln t|}{1 + t^2} dt \text{ converge}$$

$$x\mapsto f_4(x,t) \text{ admet une dérivée partielle continue par rapport à } x: \\ \frac{\partial f_4}{\partial x} = \frac{1}{1+t^2} \frac{\partial t^x}{\partial x} \frac{-1}{(1+t^x)^2} = -\frac{\ln(t)t^x}{(1+t^x)(1+t^x)^2} = \frac{-\ln t}{1+t^2} \frac{t^x}{1+t^x} \frac{1}{1+t^x}.$$

On constate que $\left|\frac{\partial f_4}{\partial x}\right| \le h(t)$, ce qui constitue une **hypothèse de domination** .

Alors
$$F_4 \operatorname{est} \mathscr{C}^1 \operatorname{sur} \mathbb{R}$$
, et $F_4'(x) = -\int_0^{+\infty} \frac{\ln(t)t^x}{(1+t^2)(1+t^x)^2} dt$.

Réponse : c) Dans l'intégrale définissant $F_4'(x)$, on effectue le changement de variable et \mathscr{C}^1 $u = \frac{1}{t}$, décroissant de \mathbb{R}_+^* dans lui-même : $\mathrm{d}t = \frac{-\mathrm{d}u}{u^2}$ et $\frac{\ln t \, t^x}{(1+t^2)(1+t^x)^2} = \frac{-\ln(u)\frac{1}{u^x}}{(1+\frac{1}{u^2})(1+\frac{1}{u^x})^2} = \frac{-\ln(u)u^x}{u^2(1+u^2)(1+u^x)^2}$, donc $F_4'(x) = -\int_{+\infty}^0 \frac{-\ln u u^x}{u^2(1+u^2)(1+u^x)^2} \frac{-\mathrm{d}u}{u^2} = \int_0^{+\infty} \frac{\ln u u^x}{(1+u^2)(1+u^x)^2} \mathrm{d}u = -F_4'(x)$, et enfin $F_4'(x) = 0$ pour tout $x \in \mathbb{R}$. Mais $F_4(0) = \frac{\mathrm{d}t}{2(1+t^2)} = \frac{1}{2}\frac{\pi}{2} = \frac{\pi}{4}$, ce qui amène $F_4(2) = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^2} = \frac{\pi}{4}$ et $F_4(\pi) = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+t^\pi)} = \frac{\pi}{4}$.

- Soit f_5 la fonction définie par $f_5(x,t) = \frac{\arctan(xt)}{1+t^2}$, et $F_5(x) = \int_0^{+\infty} f_5(x,t) dt$.
 - a) Montrer que F_5 est définie et impaire sur $\mathbb R$. Montrer que F_5 est continue sur $\mathbb R$.
 - **b)** Montrer que $\frac{\partial f_5}{\partial x} = \frac{t}{(1+t^2)(1+t^2x^2)} = \frac{1}{1-x^2} \left(\frac{t}{1+t^2} \frac{tx^2}{1+t^2x^2} \right)$.

À l'aide de l'inégalité $0 \le \frac{u}{1+u^2} \le \frac{1}{2}$, montrer que pour t > 0, $0 \le \frac{\partial f_5}{\partial x} \le \frac{1}{x} \frac{1}{2(1+t^2)}$.

Montrer que F est \mathscr{C}^1 sur \mathbb{R}_+^* , et exprimer $F_5'(x)$ pour x>0 comme une intégrale, puis sans symbole intégrale.

c) Montrer que pour tout $x \in \mathbb{R}$, $F_5(x) = \int_0^x \frac{\ln|u|}{1-u^2} du$.

En déduire que $\int_0^1 \frac{\ln|u|}{1-u^2} du = \frac{\pi^2}{8}$.

Réponse :

- a) Pour tout $x \in \mathbb{R}$, $f_5(x,.)$ est continue et positive sur \mathbb{R} , et $\forall (x,t) \in \mathbb{R}^2, 0 \le f_5(x,t) \le \frac{1}{1+t^2}$. Comme $t \mapsto \frac{1}{1+t^2}$ est intégrable sur \mathbb{R}_+ , $f_5(x,.)$ est intégrable sur \mathbb{R}_+ . De plus, pour tout $(x,t) \in \mathbb{R}$, $f_5(-x,t) = -f_5(x,t)$ donc après intégration pour t décrivant \mathbb{R}_+ , $F_5(-x) = -F_5(x)$.
- **b)** La fonction $x \mapsto f_5(.,t)$ est continue pour tout $x \in \mathbb{R}$, et la majoration $|f_5(x,t)| \le \frac{1}{1+t^2}$ est une **hypothèse de domination**, donc F_5 est continue sur \mathbb{R} .
- $\textbf{c)} \ \ f_5 \text{ est } \mathscr{C}^1 \ \frac{\partial f_5}{\partial x} = \frac{1}{1+t^2} \frac{\partial \arctan(xt)}{\partial x} = \frac{1}{1+t^2} \frac{x}{1+x^2t^2}.$ $\frac{t}{1+t^2} \frac{tx^2}{1+t^2x^2} = \frac{t}{(1+t^2)(1+x^2t^2)} \left(1+t^2x^2-x^2(1+t^2)\right) = \left(1-x^2\right) \frac{t}{(1+t^2)(1+t^2x^2)}$ $1+u^2-2u \geqslant 0, 0 \leqslant \frac{u}{1+u^2} \leqslant \frac{1}{2}, \text{ donc pour tout } (x,t) \in \mathbb{R}^2, 0 \leqslant \frac{xt}{1+x^2t^2} \leqslant \frac{1}{2}, \text{ soit } 0 \leqslant \frac{\partial f_5}{\partial x} \leqslant \frac{1}{2(1+t^2)}.$ Ceci constitue une **hypothèse de domination**, donc F_5 est de classe \mathscr{C}^1 sur \mathbb{R} , et $\forall x \in \mathbb{R}$,

$$\begin{split} & F_5'(x) = \int_0^{+\infty} \frac{1}{x^2 - 1} \left(\frac{t}{1 + t^2} - \frac{tx^2}{1 + t^2x^2} \right) \mathrm{d}t \ . \\ & \text{Soit } A > 0, \text{ alors } \int_0^A \frac{1}{x^2 - 1} \left(\frac{t}{1 + t^2} - \frac{tx^2}{1 + t^2x^2} \right) \mathrm{d}t \ = \ \frac{1}{x^2 - 1} \left(\int_0^A \frac{t}{1 + t^2} \mathrm{d}t - \int_0^A \frac{tx^2}{1 + t^2x^2} \mathrm{d}t \right) \ = \ \frac{1}{2(x^2 - 1)} \left(\left[\ln\left(1 + t^2\right) \right]_0^A - \left[\ln\left(1 + x^2t^2\right) \right]_0^A \right) = \frac{1}{2(x^2 - 1)} \ln\frac{1 + A^2}{1 + x^2A^2}. \end{split}$$

En faisant tendre A vers $+\infty$, on trouve alors $F_5'(x) = \frac{\ln|x|}{1-x^2}$ pour $x \in \mathbb{R}_+^* \setminus \{1\}$.

- **d)** F_5 est de classe \mathscr{C}^1 sur \mathbb{R} , s'annule en 0 et a la même dérivée que $x\mapsto \int_0^x \frac{\ln|u|}{1-u^2}\mathrm{d}u$ (sauf peut-être en -1,0,1), on trouve $\forall x\in\mathbb{R}, F_5(x) = \int_0^x \frac{\ln|u|}{1-u^2}\mathrm{d}u$. Alors $\int_0^x \frac{\ln|u|}{1-u^2}\mathrm{d}u = F_5(1) = \int_0^{+\infty} \frac{\arctan(t)}{1+t^2}\mathrm{d}t$. Or $\arctan'(t) = \frac{1}{1+t^2}$, $\operatorname{donc} \frac{\arctan(t)}{1+t^2} = \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t} \left(\arctan t^2\right)$, $\operatorname{donc} \int_0^{+\infty} \frac{\arctan(t)}{1+t^2}\mathrm{d}t = \left[\frac{1}{2}(\arctan t)^2\right]_0^{+\infty} = \frac{\pi^2}{8}$, $\operatorname{donc} \left[\int_0^1 \frac{\ln|u|}{1-u^2}\mathrm{d}u = \frac{\pi^2}{8}\right]$.
- Pour $k \in \mathbb{N}$, montrer que $\int_0^1 t^{2k} \ln t \, dt$ converge et vaut $\frac{-1}{(2k+1)^2}$.

 En déduire que $\int_0^1 \frac{\ln |u|}{1-u^2} \, du = \sum_{k=0}^{+\infty} \frac{-1}{(2k+1)^2}$.

Réponse : Si k = 0, ln est réputé intégrable sur]0,1[. Si $k \in \mathbb{N}^*$, alors $t \mapsto t^{2k} \ln t$ est prolongeable en une fonction continue sur [0,1], donc est intégrable sur]0,1[.

Posons en vue d'une intégration par parties :
$$\begin{cases} u'(t) = t^{2k} \\ v(t) = \ln t \end{cases} \begin{cases} u'(t) = \frac{t^{2k+1}}{2k+1} \\ v'(t) = \frac{1}{t} \end{cases}$$

Alors $uv(t) = \frac{t^{2k+1}}{2k+1} \ln t$ est prolongeable par continuité sur [0,1] en posant uv(0) = 0, donc le crochet $[uv]_0^1$ existe et vaut 0:

$$\int_0^1 t^{2k} \ln t \, \mathrm{d}t = 0 - \int_0^1 \frac{t^{2k+1}}{2k+1} \frac{1}{t} \, \mathrm{d}t = -\frac{1}{2k+1} \int_0^1 t^{2k} \frac{1}{t} \, \mathrm{d}t = \frac{-1}{(2k+1)^2}.$$

Comme $f_k : t \mapsto t^{2k} \ln t$ est négative sur $]0,1], \int_0^1 |f_k(t)| dt = -\int_0^1 f_k(t) dt = \frac{1}{(2k+1)^2}, donc \sum_{k \ge 0} \int_0^1 |f_k(t)| dt$ converge.

De plus,
$$\sum_{k=0}^{+\infty} f_k(t) = \frac{\ln t}{1-t^2}$$
 pout tout $t \in]0,1[$:

Le théorème d'intégration terme à terme donne alors $\sum_{k=0}^{+\infty} \int_0^1 f_k(t) dt = \sum_{k=0}^{+\infty} \frac{-1}{(2k+1)^2} = \int_0^1 \sum_{k=0}^{+\infty} f_k(t) dt = \int_0^1 \int_0^1 f_k(t) dt$

$$\int_0^1 \frac{\ln t}{1 - t^2} dt, \text{ donc finalement}: \int_0^1 \frac{\ln |u|}{1 - u^2} du = \sum_{k=0}^{+\infty} \frac{-1}{(2k+1)^2}$$

Pour $x \in \mathbb{R}$, on pose $G(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} dt$ et $H(x) = \int_0^x e^{-t^2} dt$.

- **a)** Montrer que H est \mathscr{C}^{∞} sur \mathbb{R} , et que G est continue sur \mathbb{R} et de classe C^1 sur \mathbb{R}_+ . Calculer H'(x) et G'(x) pour x > 0. (on exprimera G'(x) sous forme d'une intégrale).
- **b)** Montrer que $G + H^2$ est une fonction constante sur \mathbb{R}_+ , constante que l'on déterminera.
- c) Montrer que $\lim_{x \to +\infty} G(x) = 0$, et en déduire que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Réponse:

a) Montrer que H est \mathscr{C}^{∞} sur \mathbb{R} , et que G est continue sur \mathbb{R} et de classe C^1 sur \mathbb{R}_+ .

Calculer H'(x) et G'(x) pour x > 0. H est \mathscr{C}^{∞} comme primitive d'une fonction de classe \mathscr{C}^{∞} : $t \mapsto e^{-t^2}$. Alors $H'(x) = e^{-x^2}$.

 $g(x,.): t \mapsto g(x,t) = \frac{e^{-x^2(1+t^2)}}{1+t^2}$ est continue sur [0,1] pour tout $x \in \mathbb{R}$, donc intégrable sur [0,1].

 $g(.,t): x \mapsto g(x,t)$ est de classe \mathscr{C}^1 sur \mathbb{R} pour tout $t \in [0,1]$, et $\frac{\partial g(x,t)}{\partial t} = -2x(1+t^2)\frac{e^{-x^2(1+t^2)}}{1+t^2} = -2xe^{-x^2(1+t^2)}$.

Soit $[-a,a] \subset \mathbb{R}$, alors pour tout $(x,t) \in [a,b] \times [0,1]$, $\left| \frac{\partial g(x,t)}{\partial t} \right| \le 2a$, la fonction constante de valeur 2a étant intégrable sur [0,1], ce qui constitue une **hypothèse de domination**.

Finalement, G est de classe \mathcal{C}^1 sur tout segment de \mathbb{R} , donc sur \mathbb{R} , et pour tout $x \in \mathbb{R}$:

$$G'(x) = \int_0^1 -2x e^{-x^2} e^{-x^2 t^2} dt = -2x e^{-x^2} \int_0^1 e^{-x^2 t^2} dt.$$

b) $G + H^2$ est de classe \mathscr{C}^1 sur \mathbb{R} , de dérivée

$$(G+H^2)'(x) = G'(x) + 2H(x)H'(x) = 2e^{-x^2} \left(-x \int_0^1 e^{-x^2t^2} dt + \int_0^x e^{-u^2} du\right).$$

Si $x \neq 0$, on peut avoir recours à un changement de variable strictement monotone u = xt: $x \int_0^1 e^{-x^2t^2} dt = \int_0^x e^{-u^2} du$, donc $(G + H^2)'(x) = 0$ si $x \neq 0$. On remarque de plus : $(G + H^2)'(0) = 0$.

Ainsi $G + H^2$ est une fonction constante sur \mathbb{R}_+ , de valeur $G(0) + H(0)^2 = G(0) = \int_0^1 \frac{\mathrm{d}t}{1+t^2} = \frac{\pi}{4}$.

c) Comme $0 \le \frac{e^{-x^2(1+t^2)}}{1+t^2} \le \frac{e^{-x^2}}{1+t^2}$ pour tout x > 0 et $t \in [0,1]$, on obtient par intégration : $0 \le G(x) \le e^{-x^2} \int_0^1 \frac{dt}{1+t^2} = \frac{\pi}{4} e^{-x^2}$ donc $\lim_{x \to +\infty} G(x) = 0$ par encadrement.

Alors $\frac{\pi}{4} = \lim_{x \to +\infty} (G(x)^2 + H(x)) = \left(\int_0^{+\infty} e^{-t^2} dt \right) + 0$, soit $\left[\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2} \right]$

- * Soit $(a,b) \in (\mathbb{R}_+^*)^2$, on considère la fonction F_8 définie par $F_8(x) = \int_0^{+\infty} \frac{\mathrm{e}^{-at} \mathrm{e}^{-bt}}{t} \cos(xt) dt$.
 - a) Déterminer l'ensemble de définition de F_8 .
 - **b)** À l'aide d'une intégration par parties judicieuse, montrer que $\lim_{x\to 0} F_8(x) = 0$.
 - c) Montrer que F_8 est dérivable sur son ensemble de définition et calculer $F_8'(x)$ comme une intégrale.
 - **d)** En déduire une expression explicite de $F_8(x)$, puis de $F_8(x)$.

Réponse :

a) Quitte à échanger a et b, supposons que 0 < a < b (si b = a, F_8 est nulle).

$$\left|\frac{\mathrm{e}^{-at}-\mathrm{e}^{-bt}}{t}\cos(xt)\right| \leqslant \frac{\mathrm{e}^{-at}-\mathrm{e}^{-bt}}{t}. \ \psi: t \mapsto \frac{\mathrm{e}^{-at}-\mathrm{e}^{-bt}}{t} \text{ est positive et continue sur }]0,+\infty[, \text{ et } \psi(t) = \frac{1-at-(1-bt)+o_{t\to 0}(t)}{t} = (b-a)+o(t), \text{ donc } \psi \text{ est prolongeable en une fonction continue sur } \mathbb{R}_+.$$

 $\psi(t) \le \frac{\mathrm{e}^{-at}}{t} = o_{t \to +\infty} (\mathrm{e}^{-at}), \, \mathrm{donc} \, \psi \, \mathrm{est} \, \mathrm{int\'egrable} \, \mathrm{sur} \, [1 + \infty[.$

Pour tout $x \in \mathbb{R}$, $F_8(x)$ est définie comme intégrale absolument convergente.

b) ψ est DSE, donc de classe \mathscr{C}^1 en 0; elle est donc \mathscr{C}^1 sur \mathbb{R} , avec $\psi'(t) = -\frac{ae^{-at} - be^{-bt}}{t} - \frac{e^{-at} - e^{-bt}}{t^2}$.

Posons en vue d'une IPP
$$\begin{cases} u'(t) = \cos(xt) \\ v(t) = \psi(t) \end{cases}; \begin{cases} u(t) = \frac{\sin(xt)}{x} \\ v'(t) = \psi'(t) \end{cases};$$

 $uv(t) = \psi(t) \frac{\sin(xt)}{x}$ s'annule en 0, et tend vers 0 en $+\infty$, donc $F_8(x) = 0 - \frac{1}{x} \int_0^{+\infty} \psi'(t) \sin(xt) dt$.

L'intégrabilité de ψ' sur \mathbb{R}_+ montre que, $\forall x \in \mathbb{R}$, $\left| \int_0^{+\infty} \psi'(t) \sin(xt) dt \right| \le \int_0^{+\infty} |\psi'|(t) dt = M$, donc $|F_8(x)| \le \frac{M}{x}$ et finalement $\left| \lim_{x \to +\infty} F_8(x) = 0. \right|$

c) Pour tout $t \in \mathbb{R}_+^*, x \mapsto \frac{e^{-at} - e^{-bt}}{t} \cos(xt)$ est \mathscr{C}^1 sur \mathbb{R} , et

$$\frac{\partial}{\partial x} \left(\frac{\mathrm{e}^{-at} - \mathrm{e}^{-bt}}{t} \cos(xt) \right) = \frac{\mathrm{e}^{-at} - \mathrm{e}^{-bt}}{t} (-t \sin(xt)) = \mathrm{e}^{-bt} \sin(xt) - \mathrm{e}^{-at} \sin(xt).$$

Cette dérivée partielle est clairement continue sur \mathbb{R}_+^*

De plus, soit $[A,B] \subset \mathbb{R}_+^*$; $\forall x \in \mathbb{R}$, $\forall t \in \mathbb{R}_+^*$, $\left| \frac{\partial}{\partial x} \left(\frac{\mathrm{e}^{-at} - \mathrm{e}^{-bt}}{t} \sin(xt) \right) \right| \le \mathrm{e}^{-bt} + \mathrm{e}^{-at} \le 2\mathrm{e}^{-At}$ qui est intégrable, donc ceci constitue une **hypothèse de domination**.

 F_8 est de classe \mathscr{C}^1 sur tout segment de \mathbb{R}_+ , donc sur \mathbb{R}_+^* , et $F_8'(x) = \int_0^{+\infty} (e^{-bt} - e^{-at}) \sin(xt) dt$

d) $\int_{0}^{+\infty} e^{-at} \sin(xt) dt$ est la partie imaginaire de l'intégrale absolument convergente

$$\int_{0}^{+\infty} e^{-at} e^{ixt} dt = \left[\frac{e^{(-a+ix)t}}{ix-a} \right]_{0}^{+\infty} = \left[\frac{(a+ix)e^{-at}e^{ixt}}{a^2+x^2} \right]_{0}^{+\infty} \operatorname{donc} F_8'(x) = \frac{x}{b^2+x^2} - \frac{x}{a^2+x^2}, \text{ et par integration} : F_8(x) = \frac{1}{2} \left(\ln(b^2+x^2) - \ln(a^2+x^2) \right) + C, C \in \mathbb{R}.$$

Alors $C = \lim_{n \to +\infty} F_8(x)$, donc C = 0; on en tire que $F_8(x) = \frac{1}{2} \left(\ln(b^2 + x^2) - \ln(a^2 + x^2) \right)$. En particulier $F_8(0) = \ln(b) - \ln(a)$.

* **9** a) Montrer la convergence, pour $x \in \mathbb{R}^*$, de $F_9(x) = \int_{-x}^x \frac{\mathrm{d}t}{\sqrt{(1+t^2)(x^2-t^2)}}$.

b) Si x > 0, effectuer le changement de variable t = x.u dans $F_9(x)$, et en déduire que pour tout $x \in \mathbb{R}$, $F_9(x) = G(x) = \int_{-1}^1 \frac{\mathrm{d}u}{\sqrt{1 + x^2 u^2} \sqrt{1 - u^2}}.$

Montrer que G est continue sur \mathbb{R} , paire, monotone sur \mathbb{R}_+ , et que $\lim_{n \to +\infty} G(n) = 0$.

c) Montrer que F_9 admet une limite en $+\infty$, et en 0, et préciser ces limites.

Réponse:

- a) $f_9: t \mapsto \frac{1}{\sqrt{(1+t^2)(x^2-t^2)}}$ est continue, positive et paire sur]-x,x[. De plus, $f_9(t) = \frac{1}{\sqrt{(1+t^2)(x+t)(x-t)}} \underset{t \to x}{\sim} \frac{1}{\sqrt{2x(1+x^2)}} \frac{1}{x-t}$, d'où la convergence de $\int_0^x f_9(t) dt$. Celle de $F_9(x)$ s'en déduit par parité (avec l'égalité $F_9(x) = 2 \int_0^x f_9(t) dt$).
- **b)** Si x > 0, le changement de variable t = u.x est strictement croissant et de classe \mathscr{C}^1 dans [-x,x] dans [-1,1], et $\mathrm{d}t = x\mathrm{d}u$, donc $F_9(x) = \int_{-1}^1 \frac{x\mathrm{d}u}{\sqrt{1+x^2u^2}\sqrt{x^2-u^2x^2}} = \int_{-1}^1 \frac{\mathrm{d}u}{\sqrt{1+x^2u^2}\sqrt{1-u^2}} = G(x)$. Cette formule peut être étendue par parité : $\forall x \in \mathbb{R}, F_9(x) = G(x)$. $u\mapsto \frac{1}{\sqrt{1+x^2u^2}\sqrt{1-u^2}}$ est continue sur] -1, 1[pour tout $x\in\mathbb{R}$, et $x\mapsto \frac{1}{\sqrt{1+x^2u^2}\sqrt{1-u^2}}$ est continue sur \mathbb{R} pour tout $xt\in [-1,1[$.

Pour tous $(x, u) \in \mathbb{R} \times]-1,1[, 0 \le \frac{1}{\sqrt{1+x^2u^2}\sqrt{1-u^2}} \le \frac{1}{\sqrt{1-u^2}}, \text{ et } u \mapsto \frac{1}{\sqrt{1-u^2}}, \text{ dérivée de }$

arcsin, est intégrable sur] – 1,1[; $\int_{-1}^{1} \frac{\mathrm{d}t}{\sqrt{1-v^2}} = \pi$, ce qui fournit une **hypothèse de domination**

G, et donc $|F_9$, est continue sur \mathbb{R}

Puisque $\sqrt{1+x^2u^2} = \sqrt{1+(-x)^2u^2}$, G(x) = G(-x): *G* est paire.

De plus, si 0 < y < x, pour tout $u \in \mathbb{R}$: $\frac{1}{\sqrt{1+x^2u^2}} \le \frac{1}{\sqrt{1+y^2u^2}}$ donc par multiplication par $\frac{1}{\sqrt{1-u^2}}$, puis intégration : $G(x) \le G(y)$: G est décroissante.

Un changement de variable $t = \sin u$, croissant et \mathscr{C}^1 de] – 1,1[dans] $-\frac{\pi}{2},\frac{\pi}{2}$ [, donne G(x) =

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{1 + x^2 \sin^2 t}};$$

La parité de $t \mapsto \frac{1}{\sqrt{1+x^2\sin^2 t}}$ donne ensuite $G(x) = 2\int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{1+x^2\sin^2 t}}$.

D'après la relation de Chasles, pour $x \in]0,1[$:

 $\frac{G(x)}{2} = \int_0^{\arcsin \frac{1}{\sqrt{x}}} \frac{dt}{\sqrt{1 + x^2 \sin^2 t}} + \int_{\arcsin \frac{1}{\sqrt{x}}}^{\frac{\pi}{2}} \frac{dt}{\sqrt{1 + x^2 \sin^2 t}}; \text{ mais } \int_0^{\frac{1}{\sqrt{x}}} \frac{dt}{\sqrt{1 + x^2 \sin^2 t}} \le \arcsin \frac{1}{\sqrt{x}}, \text{ et } \int_0^{\frac{\pi}{2}} \frac{dt}{\sqrt{1 + x^2 \sin^2 t}} dt$ comme $\sqrt{1+x^2\sin^t} \ge \sqrt{1+x}$ pour $t \ge \frac{1}{\sqrt{x}}: \int_{\frac{1}{x}}^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{1+x^2\sin^2t}} \le \int_{\frac{1}{x}}^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{1+x}} \le \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{1+x}} \le \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{1+x^2\sin^2t}} \le \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt{1+x^2\cos^2t}} \le \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{d}t}{\sqrt$

$$\frac{\pi}{2\sqrt{1+x}}.$$

Alors $0 \le G(x) \le \frac{1}{\sqrt{x}} + \frac{\pi}{2\sqrt{1+x}}$, donc le théorème d'encadrement donne $\lim_{x\to 0} G(x) = 0$.

c) F_9 étant monotone, $\lim_{n \to +\infty} F_9(n) = 0$ implique $\lim_{x \to +\infty} F_9(x) = 0$.

Puisque *G* est continue en 0, $\lim_{x \to 0} F_9(x) = \lim_{x \to 0} G(x) = G(0) = \pi$