PT Exercices sur les espaces euclidiens (solutions)

2024/2025

feuille Nº 4

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien, et $\|\cdot\|$ la norme euclidienne associée au produit scalaire. Montrer que $\forall (x,y) \in E^2$, $\|x+y\| \|x-y\| \le \|x\|^2 + \|y\|^2$. Étudier le cas d'égalité.

Réponse:

a)
$$\|x+y\|^2 = \langle x+y|x+y\rangle = \|x\|^2 + \|y\|^2 + 2\langle x|y\rangle$$
 (Formule d'Al-Kashi), et $\|x-y\|^2 = \langle x+y|x+y\rangle = \|x\|^2 + \|y\|^2 - 2\langle x|y\rangle$ donc par multiplication : $\|x+y\|^2 \cdot \|x-y\|^2 = (\|x\|^2 + \|y\|^2 + 2\langle x|y\rangle)(\|x\|^2 + \|y\|^2 - 2\langle x|y\rangle) = (\|x\|^2 + \|y\|^2)^2 - (2\langle x|y\rangle)^2$ $\|x+y\|^2 \cdot \|x-y\|^2 \le (\|x\|^2 + \|y\|^2)^2$ avec égalité si, et seulement si, $\langle x|y\rangle = 0$ c'est-à-dire $x \perp y$. L'inégalité demandée s'en déduit par passage à la racine carrée.

* Soit $(x_1, x_2, ..., x_n) \in (\mathbb{R}_+^*)^n$ tel que $\sum_{k=1}^n x_k = 1$. Montrer que $\sum_{k=1}^n \frac{1}{x_k} \ge n^2$ et étudier le cas d'égalité. Indication : utiliser l'inégalité de Cauchy-Schwarz.

Réponse: Considérons que \mathbb{R}^n est muni du produit scalaire usuel, et posons $X = (\sqrt{x_1}, \sqrt{x_2}, ..., \sqrt{x_n})^\mathsf{T}$ et $Y = \left(\frac{1}{\sqrt{x_1}}, \frac{1}{\sqrt{x_2}}, ..., \frac{1}{\sqrt{x_n}}\right)^\mathsf{T}$.

Alors
$$\langle X|Y\rangle = X^{\mathsf{T}}.Y = \sum_{k=1}^{n} \sqrt{x_k} \frac{1}{\sqrt{x_k}} = n$$
, $||X||^2 = \sum_{k=1}^{n} \sqrt{x_k}^2 = \sum_{k=1}^{n} x_k = 1$, et $||Y||^2 = \sum_{k=1}^{n} \frac{1}{\sqrt{x_k^2}} = \sum_{k=1}^{n} \frac{1}{x_k}$.

L'inégalité de Cauchy-Schwarz :
$$\langle X|Y\rangle^2 \le \|x\|^2 \|y\|^2$$
 s'écrit alors $n^2 \le \sum_{k=1}^n \frac{1}{x_k}$.

Il y a égalité lorsque X et Y sont colinéaires, c'est-à-dire lorsque $\exists \lambda \in \mathbb{R}, \forall k \in [[1, n]], \quad \lambda \sqrt{x_k} = \frac{1}{\sqrt{x_k}}$; ceci

amène que $\lambda x_k = 1$ pour tout k, donc que $\sum_{k=1}^n \lambda x_k = n$; comme $\sum_{k=1}^n x_k = 1$, on en déduit que $\lambda = n$ donc

$$x_k = \frac{1}{n}$$

- * Soit *E* un espace euclidien, (a, b) un système libre de *E*, et $u \in \mathcal{L}(E)$ définie par $u(x) = \langle x | a \rangle a + \langle x | b \rangle b$.
 - **a)** Montrer que $\forall (x,y) \in E^2, \langle u(x)|y \rangle = \langle x|u(y) \rangle$.
 - **b)** En déduire que $\operatorname{Ker}(u) \perp \operatorname{Im}(u)$, et en déduire que $\operatorname{Ker}(u)$ et $\operatorname{Im}(u)$ sont supplémentaires orthogonaux. Montrer que $\operatorname{Ker}(u) = \operatorname{Vect}(a, b)^{\perp}$ et que $\operatorname{Im}(u) = \operatorname{Vect}(a, b)$.
 - c) Écrire la matrice de l'endomorphisme induit par u sur Im(u) dans la base (a, b), et montrer que u est diagonalisable.

- a) Soit $(x, y) \in E^2$, $\langle u(x)|y \rangle = \langle x|a \rangle \langle a|y \rangle + \langle x|b \rangle \langle b|y \rangle = \langle x|u(y) \rangle$.
- **b)** Soit $(k, y) \in \text{Ker}(u) \times \text{Im}(u)$, alors il existe $x \in E$, y = u(x) donc $\langle k|y \rangle = \langle k|u(x) \rangle = \langle u(k)|x \rangle =$ $\langle 0_E | x \rangle = 0$, donc $| \text{Ker}(u) \perp \text{Im}(u) |$

D'après la formule du rang, dim Ker(u) + dim Im(u) = dim E; mais $Ker(u) \cap Im(u) = \{0_E\}$, donc $\dim(\operatorname{Ker}(u) \oplus \operatorname{Im}(u)) = \dim E \operatorname{donc} \operatorname{Ker}(u) \oplus \operatorname{Im}(u) = E.$

Ker(u) et Im(u) sont supplémentaires orthogonaux.

Comme (a,b) est libre, $x \in \text{Ker}(u) \iff \langle a|x \rangle = \langle b|x \rangle = 0 \iff x \in \text{Vect}(a,b)^{\perp}$: $Ker(u) = Vect(a, b)^{\perp}$

Il est clair que $\operatorname{Im}(u) \subset \operatorname{Vect}(a,b)$. On obtient l'inclusion inverse par la formule du rang (qui garantit que $\operatorname{rg}(u) = 2$, ou bien par les égalités $\operatorname{Ker}(u) \oplus \operatorname{Im}(u) = \operatorname{Vect}(a,b)^{\perp} \oplus \operatorname{Vect}(a,b) = E$. $\operatorname{Im}(u) \subset \operatorname{Vect}(a,b)$

c) On obtient d'après l'énoncé : $u(a) = ||a||^2 a + \langle a|b\rangle b$ et $u(a) = \langle a|b\rangle a + ||b||^2 b$, donc la matrice de l'endomorphisme induit par u sur Im(u) dans la base (a,b) est $G = \begin{pmatrix} \|a\|^2 & \langle a|b \rangle \\ \langle a|b \rangle & \|b\|^2 \end{pmatrix}$. $\chi_G = X^2 - (\|a\|^2 + \|b\|^2)X + (\|a\|^2 \cdot \|b\|^2 - (\langle a|b \rangle)^2) = X^2 - sX + p \text{ avec } s = \text{Tr}(G) = \|a\|^2 + \|b\|^2 \text{ et } p = \det(G) = \|a\|^2 \cdot \|b\|^2 - (\langle a|b \rangle)^2.$

 $p = \det(G) = \|a\|^{2} \cdot \|b\|^{2} - (\langle a|b\rangle)^{2}.$ Le discriminant de χ_{G} est $s^{2} - 4p = \|a\|^{4} + \|b\|^{4} + 2\|a\|^{2} \cdot \|b\|^{2} - 4\|a\|^{2} \cdot \|b\|^{2} + 4(\langle a|b\rangle)^{2} = \|a\|^{4} + \|b\|^{4} + 2\|a\|^{2} \cdot \|b\|^{2} - 4\|a\|^{2} \cdot \|b\|^{2} + 4(\langle a|b\rangle)^{2} = \|a\|^{4} + \|b\|^{4} + 2\|a\|^{2} \cdot \|b\|^{2} + 4(\langle a|b\rangle)^{2} = \|a\|^{4} + \|b\|^{4} + 2\|a\|^{2} \cdot \|b\|^{2} + 4(\langle a|b\rangle)^{2} = \|a\|^{4} + \|b\|^{4} + 2\|a\|^{2} \cdot \|b\|^{2} + 4(\langle a|b\rangle)^{2} = \|a\|^{4} + \|b\|^{4} + 2\|a\|^{2} \cdot \|b\|^{2} + 4(\langle a|b\rangle)^{2} = \|a\|^{4} + \|b\|^{4} + 2\|a\|^{2} \cdot \|b\|^{2} + 4(\langle a|b\rangle)^{2} = \|a\|^{4} + \|b\|^{4} + 2\|a\|^{2} \cdot \|b\|^{2} + 4(\langle a|b\rangle)^{2} = \|a\|^{4} + \|b\|^{4} + 2\|a\|^{2} \cdot \|b\|^{2} + 4\|a\|^{2} \cdot \|b\|^{2} + 4(\langle a|b\rangle)^{2} = \|a\|^{4} + \|b\|^{4} + 2\|a\|^{2} \cdot \|b\|^{2} + 4(\langle a|b\rangle)^{2} = \|a\|^{4} + \|b\|^{4} + 2\|a\|^{2} \cdot \|b\|^{2} + 4(\langle a|b\rangle)^{2} = \|a\|^{4} + \|b\|^{4} + 2\|a\|^{2} \cdot \|b\|^{2} + 4(\langle a|b\rangle)^{2} = \|a\|^{4} + \|b\|^{4} + 2\|a\|^{4} + \|b\|^{4} +$ $||b||^4 - 2||a||^2 \cdot ||b||^2 + 4(\langle a|b\rangle)^2 = (||a||^2 - ||b||^2)^2 + 4(\langle a|b\rangle)^2 \ge 0.$

Ce discriminant est nul si, et seulement si, ||a|| = ||b|| et $\langle a|b\rangle = 0$ et alors la matrice G est multiple de l'identité, donc diagonalisable, et admettant une valeur propre double : $\lambda = ||a|| = ||b||$.

Si, au contraire, le discriminant est non nul, alors il est strictement positif et G admet deux valeurs propres réelles distinctes λ et μ (et positives, puisque $\lambda + \mu = s \ge 0$ et $\lambda \mu = p \ge 0$ d'après Cauchy-Schwarz).

Dans les deux cas, dim E_0 + dim E_λ + dim E_u = n-2+1+1=n, donc u est diagonalisable

- $\boxed{\textbf{4}} \text{ On considère la matrice } M = \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}.$
 - a) Déterminer une base orthogonale de Im(M) et de Ker(M). Montrer que ces deux espaces sont orthogo-
 - b) Justifier que M est diagonalisable, et diagonaliser M. Reconnaître l'endomorphisme canoniquement associé à M.
 - c) Montrer que $A = I_4 + M$ est inversible, et que A^{-m} tend quand m tend vers $+\infty$ vers la matrice d'un endomorphisme à préciser.
 - **d)** Déterminer la symétrie S par rapport à Im(M).

a) Ker(M) est défini par le système (purgé des équations redondantes) : $\begin{cases} x - z = 0 \\ y - t = 0 \end{cases}$. Il est de dimension 4 - 2 = 2.

On trouve facilement $\operatorname{Ker}(M) = \operatorname{Vect}(U, W)$ avec $U = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ et $W = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, et $U \perp W$.

Les deux premières colonnes de $\operatorname{Im}(M)$ (qui est de dimension 2) fournissent une base de $\operatorname{Im}(M)$: V, T avec $V = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ et $T = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}$, qui plus est orthogonale $V \perp T$.

Comme $V \perp U, V \perp W$ et que $T \perp U, T \perp W$, le système U, V, W, T est une base orthogonale de \mathbb{R}^4 , adaptée à la somme directe $\operatorname{Ker}(M) \oplus \operatorname{Im}(M)$, donc $\operatorname{Im}(M)$ et $\operatorname{Ker}(M)$ sont orthogonaux.

b) Un calcul matriciel montre que M.V = V et que M.T = T, donc (U,V,W,T) est une base de \mathbb{R}^4 formée de vecteurs propres de M. M est diagonalisable, de spectre $\{0,1\}$, donc M est une matrice de projection orthogonale, puisque $Ker(M) \perp Im(M)$.

L'endomorphisme canoniquement associé à M est $\boxed{\text{la projection orthogonale sur Im}(M)}$.

c) D'après la question précédente, il existe une matrice orthogonale P telle que $M = P.\operatorname{diag}(1,1,0,0).P^{\mathsf{T}}$; et alors $A = P.\operatorname{diag}(1,1,2,2).P^{\mathsf{T}}$ puis $A^{-1} = P.\operatorname{diag}\left(1,1,\frac{1}{2},\frac{1}{2}\right).P^{\mathsf{T}}$ et enfin $A^{-m} = P.\operatorname{diag}\left(1,1,\frac{1}{2^m},\frac{1}{2^m}\right).P^{\mathsf{T}}$ pour $m \in \mathbb{N}$.

Comme diag $\left(1, 1, \frac{1}{2^m}, \frac{1}{2^m}\right)$ tend vers diag (1, 1, 0, 0) quand m tend vers $+\infty$, A^{-m} tend vers $I_4 - M$

- **d)** $2M = S + I_4$ donc $S = I_4 2M = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$
- * $\boxed{\bf 5}$ Dans un espace euclidien E muni d'une base orthonormée, soit p un projecteur de matrice P. Justifier que $\operatorname{rg}(P)=\operatorname{Tr}(P)$.

Montrer que p est une projection orthogonale si, et seulement si, P est symétrique.

Montrer que $A = \frac{1}{14} \begin{pmatrix} 13 & -2 & -3 \\ -2 & 10 & -6 \\ -3 & -6 & 5 \end{pmatrix}$ est une matrice de projection orthogonale, et préciser ses éléments.

Réponse : Si P est une matrice de projecteur, P est diagonalisable, de spectre $\{0,1\}$, donc $P \sim \begin{pmatrix} I_r & 0 \\ 0 & 0_{n-p} \end{pmatrix}$

donc $\operatorname{rg}(P) = r = \operatorname{Tr}(P)$. Si la matrice P est symétrique, alors $\forall (X,Y) \in (\mathcal{M}_{n\times 1}(\mathbb{R}))^2, P.X^{\mathsf{T}}.Y = X^{\mathsf{T}}.P.Y$ donc $\forall (x,y) \in E^2, \langle p(x)|y \rangle = \langle x|p(y) \rangle$. Alors, soit $(x,u) \in \operatorname{Ker}(p) \times \operatorname{Im}(p), \exists y \in E, u = p(y) \operatorname{donc} \langle x|u \rangle = \langle x|p(y) \rangle = \langle p(x)|y \rangle = 0$.

On en tire que $Ker(p) \perp Im(p)$ c'est-à-dire que p est une projection orthogonale.

Réciproquement, si p est une projection orthogonale, alors $S = 2P - I_3$ est une symétrie orthogonale et

$$P^{\mathsf{T}} = \left(\frac{S+I_3}{2}\right)^{\mathsf{T}} = \frac{S+I_3}{2} = P$$
, donc P est symétrique.

On vérifie que $A = A^{\mathsf{T}}$, et que $A^2 = A$. A est donc une matrice de projection orthogonale.

Comme Tr(A) = 2, A est de rang 2, donc le support de la projection $E_1(P)$ est un plan : comme

$$P - I_3 = \frac{1}{14} \begin{pmatrix} -1 & -2 & -3 \\ -2 & -4 & -6 \\ -3 & -6 & -9 \end{pmatrix}$$
, ce plan est d'équation $x + 2y + 3z = 0$.

A est la matrice de la projection orthogonale sur le plan d'équation x + 2y + 3z = 0

6 Soit $(a,b) \in \mathbb{R} \times \mathbb{R}^+_*$ et $M(a,b) = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$

B

a) Trouver une condition nécessaire et suffisante sur (a, b) pour que M(a, b) soit orthogonale.

b) Cette condition étant remplie, déterminer la nature de l'isométrie définie par M(a, b).

Réponse:

- a) Appelons C_1, C_2 et C_3 les colonnes de M(a, b). Alors $\langle C_1|C_2\rangle = \langle C_1|C_3\rangle = \langle C_2|C_3\rangle = b^2 + 2ab$, et $\langle C_1|C_1\rangle = \langle C_2|C_2\rangle = \langle C_3|C_3\rangle = a^2 + 2b^2$, donc la matrice M(a, b) est orthogonale si, et seulement si, $\begin{cases} (1) & b(b+2a) = 0 \\ (2) & a^2 + 2b^2 = 1 \end{cases}$.
- **b)** L'équation (1) est vérifiée si, et seulement si, b = 0 ou b = -2a. b > 0 par hypothèse, donc b = 0 est exclu.

Ainsi b = -2a, alors (2) s'écrit $a^2 + 8a^2 = 1$, soit $a = \frac{\varepsilon}{3}$ où $\varepsilon \in \{-1; 1\}$, donc $b = \frac{-2\varepsilon}{3}$; mais b > 0 par

hypothèse, donc
$$b = \frac{2}{3}$$
 et $a = \frac{-1}{3}$, donc $M(a,b) = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$.

Remarquons que $M.M^{\mathsf{T}} = I_3$ et $M = M^{\mathsf{T}}$, donc $M^2 = I_3$; M est une matrice de symétrie. C'est la matrice de la symétrie axiale par rapport au vecteur (1,1,1).

* 7 Polynômes de Tchebychev

- a) À l'aide de l'égalité $\cos{(n+1)}x + \cos{(n-1)}x = 2\cos{x}\cos{(nx)}$, montrer par récurrence double sur $n \in \mathbb{N}$ l'existence d'un polynôme T_n tel que $\forall x \in \mathbb{R}$, $T_n(\cos{x}) = \cos{(nx)}$, ainsi que la relation $T_{n+1} = 2XT_n T_{n-1}$.
- **b)** Calculer T_0, T_1, T_2 et T_3 . Montrer que pour tout $n \in \mathbb{N}$, deg $T_n = n$.
- c) Montrer que $\langle P|Q\rangle = \int_0^\pi P(\cos x)Q(\cos x)\mathrm{d}x$ définit un produit scalaire sur $\mathbb{R}[X]$.
- **d)** Montrer que, pour $(m, n) \in \mathbb{N}^2$, $0 \le n < m : \langle T_n | T_m \rangle = 0$.
- **e)** Déterminer la valeur minimale de $\int_0^{\pi} (\cos^2 t a \cos t b)^2 dt$ lorsque (a, b) décrit \mathbb{R}^2 .

Réponse:

a) $\cos(0x) = 1$ et $\cos(1x) = \cos x$ donc $T_0 = 1, T_1 = X$ conviennent (initialisation de la récurrence double).

Supposons que T_{n-1} et T_n soient vraies, alors pour tout réel $x: 2\cos x T_n(\cos x) - T_{n-1}(\cos x) = 2\cos x \cos(nx) - \cos(n-1)x = \cos(n+1)x$, donc en posant $T_{n+1} = 2XT_n - T_{n-1}$, on obtient $T_{n+1}(\cos x) = \cos((n+1)x)$ pour tout réel x, d'où l'existence de T_{n+1} . On conclut par récurrence double.

Remarque : unicité; s'il existait deux polynômes T_n et U_n tels que $U_n(\cos x) = \cos(n x) = T_n(\cos x)$, alors $T_n - U_n$ s'annulerait pour toutes les valeurs de $\cos x$, donc $T_n = U_n$.

b) On obtient successivement $T_0 = 1, T_1 = X, T_2 = 2X^2 - 1$ et $T_3 = 4X^3 - 3X$.

Une récurrence double montre que $\deg T_n = n$ et que T_n a la parité de n : c'est vrai pour les premières valeurs de n; supposons que $\deg T_{n-1} = n-1$, $\deg T_n = n$, $T_{n-1}(-X) = (-1)^{n-1}T_{n-1}(X)$ et $T_n(-X) = (-1)^nT_n(X)$; alors $\deg T_{n+1} = \deg (2XT_n - T_{n-1}) = n+1$ et $T_{n+1}(-X) = -2XT_n(-X) - T_{n-1}(-X) = (-1)^{n+1}(2XT_n - T_{n-1}) = (-1)^{n+1}T_{n+1}(X)$.

- c) * $\langle \cdot | \cdot \rangle$ est symétrique et bilinéaire (facile à vérifier).
 - * Si $P \in \mathbb{R}[X]$, $\langle P|P \rangle = \int_0^{\pi} P(\cos x)^2 dx \ge 0$; de plus, comme $x \mapsto P(\cos x)^2$ est continue et positive, $\langle P|P \rangle = 0 \Longrightarrow \forall x \in \mathbb{R}, P(\cos x) = 0 \Longrightarrow P = 0$.

 $\langle \cdot | \cdot \rangle$ est un produit scalaire

d) Pour $(m,n) \in \mathbb{N}^2$, $0 \le n < m : \langle T_n | T_m \rangle = \int_0^{\pi} T_n(\cos t) T_m(\cos t) dt = \int_0^{\pi} \cos(nt) \cos(mt) dt = \frac{1}{2} \int_0^{\pi} \cos((n-m)t) \cos((n+m)t) dt = \frac{1}{2} \left(\left[\frac{\sin((n-m)t)}{n-m} \right]_0^{\pi} - \left[\frac{\sin((n+m)t)}{n+m} \right]_0^{\pi} \right) = 0.$

Donc $T_n \perp T_m$, et la famille $(T_n)_{n \in \mathbb{N}}$ forme une base orthogonale de $\mathbb{R}[X]$

Réponse: e)

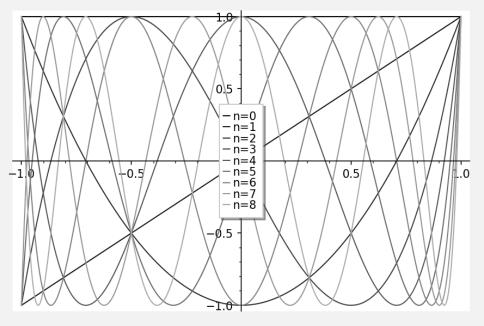
$$aX + b = \pi_{\mathbb{R}_1[X]}(X^2) = \frac{\langle X^2 | T_0 \rangle}{\langle T_0 | T_0 \rangle} T_0 + \frac{\langle X^2 | T_1 \rangle}{\langle T_1 | T_1 \rangle} T_1$$

Reponse: e)
$$\int_0^{\pi} \left(\cos^2 t - a \cos t - b\right)^2 dt = \|X^2 - aX - b\|^2 \text{ est minimal lorsque}$$

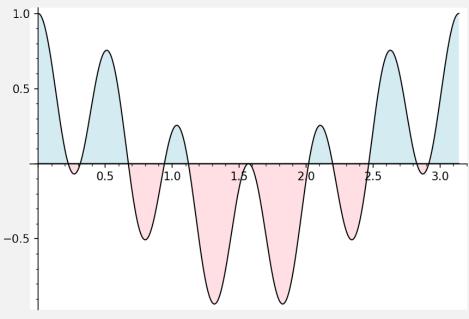
$$aX + b = \pi_{\mathbb{R}_1[X]}(X^2) = \frac{\left\langle X^2 \middle| T_0 \right\rangle}{\left\langle T_0 \middle| T_0 \right\rangle} T_0 + \frac{\left\langle X^2 \middle| T_1 \right\rangle}{\left\langle T_1 \middle| T_1 \right\rangle} T_1.$$

$$X^2 = \frac{1}{2} (2X^2 - 1 + 1) = \frac{1}{2} (T_2 + T_0), \left\langle X^2 \middle| T_1 \right\rangle = 0 \text{ et } \left\langle X^2 \middle| T_0 \right\rangle = \frac{1}{2} \left\langle T_0 \middle| T_0 \right\rangle = \pi, \text{ donc } Q = \pi_{\mathbb{R}_1[X]}(X^2) = \frac{1}{2} T_0, \text{ autrement dit l'intégrale est minimale pour } (a, b) = \left(0, \frac{1}{2}\right).$$

Sa valeur est $\|X^2 - Q\|^2 = \|X^2\|^2 - \frac{1}{4} \|T_0\|^2 = \frac{\pi}{2} - \frac{1}{4} \frac{\pi}{2}$; la valeur minimale est $\frac{\pi}{8}$.



les 9 premiers polynômes de Tchebychev



 $x \mapsto \cos(5x)\cos(7x)$ a une valeur moyenne nulle : $\langle T_5 | T_7 \rangle = 0$

8 Soit $R \in SO(3)$ canoniquement associée à la rotation r, d'angle $\theta \notin \pi \mathbb{Z}$ et d'axe dirigé par le vecteur unitaire \vec{K} ; alors $\mathcal{B}' = (\vec{I}, \vec{J}, \vec{K})$ est une base orthonormée directe. On considère la matrice $\Delta = \frac{1}{2}(R - R^{\mathsf{T}})$.

- **a)** Montrer que $\Delta^{\mathsf{T}} = -\Delta$, et en déduire qu'il existe $(p,q,r) \in \mathbb{R}^3$ tels que $\Delta = \begin{pmatrix} 0 & -r & q \\ r & 0 & -p \\ -q & p & 0 \end{pmatrix}$. On pose alors $\vec{\omega} = p\vec{t} + q\vec{j} + r\vec{k}$.
- **b)** Montrer que Δ est associé canoniquement à l'endomorphisme $\delta = \frac{1}{2}(r-r^{-1})$, et que $\forall \vec{x} \in \mathbb{R}^3, \delta(\vec{x}) = \vec{\omega} \land \vec{x}$.
- c) En écrivant la matrice Δ' de δ dans B', en déduire que $\delta(\vec{I}) = \vec{\omega} \wedge \vec{I} = \sin\theta \vec{J}$, puis que $\vec{\omega} = \sin\theta \cdot \vec{K}$.
- **d)** Quelle est la nature de l'endomorphisme défini par $R = \frac{1}{49} \begin{pmatrix} 4 & -36 & 33 \\ 48 & 9 & 4 \\ -9 & 32 & 36 \end{pmatrix}$?

- a) Avec $\Delta = \frac{1}{2}(R R^{\mathsf{T}})$, $\Delta^{\mathsf{T}} = \frac{1}{2}(R^{\mathsf{T}} R) = -\Delta$. En posant $(p, q, r) = (\delta_{3,2}, -\delta_{3,1}, \delta_{2,1})$, on trouve alors $(\delta_{2,3}, \delta_{1,3}, \delta_{1,2}) = (-p, q, -r)$ et par ailleurs $(\delta_{1,1}, \delta_{2,2}, \delta_{3,3}) = (0,0,0)$, donc $\Delta = \begin{pmatrix} 0 & -r & q \\ r & 0 & -p \\ -q & p & 0 \end{pmatrix}$.
- **b)** Comme R est orthogonale, $R^{\mathsf{T}} = R^{-1}$ donc R^{T} est associé canoniquement à r^{-1} ; donc, par linéarité, Δ est associé canoniquement à l'endomorphisme $\delta = \frac{1}{2}(r-r^{-1})$.

Un calcul matriciel montre que $\Delta \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} qz - ry \\ rx - pz \\ py - qx \end{pmatrix} = \begin{pmatrix} p \\ q \\ r \end{pmatrix} \wedge \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, donc $\forall \vec{x} \in \mathbb{R}^3, \delta(\vec{x}) = \vec{\omega} \wedge \vec{x}$

- c) Dans la base \mathscr{B}' , la matrice de R est $\begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$, donc celle de δ est $\Delta' = \begin{pmatrix} 0 & -\sin\theta & 0 \\ \sin\theta & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, donc $\delta(\vec{I}) = \vec{\omega} \wedge \vec{I} = \sin\theta \vec{J}$, $\delta(\vec{J}) = \vec{\omega} \wedge \vec{J} = -\sin\theta \vec{I}$ et $\delta(\vec{K}) = \vec{0}$. ω a pour composantes $\begin{pmatrix} 0 \\ 0 \\ \sin\theta \end{pmatrix}$, donc $\vec{\omega} = \sin\theta \cdot \vec{K}$.
- **d)** En appelant C_1 , C_2 , C_3 les colonnes de R_1 , on obtient $\langle C_1|C_2\rangle=0$, $\langle C_1|C_1\rangle=\langle C_2|C_2\rangle=1$, et $C_3=C_1\wedge C_2$, donc C_1 donc C_2 donc C_3 donc C_4 donc C_4 donc C_5 donc C_6 donc C_7 donc C_8 donc C_8

Alors $\Delta_1 = \frac{R_1 - R_1^{\mathsf{T}}}{2} = \frac{1}{7} \begin{pmatrix} 0 & -6 & 3 \\ 6 & 0 & -2 \\ -3 & 2 & 0 \end{pmatrix}$, donc $\omega_1 = \frac{1}{7} \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix} = \sin\theta \vec{K}$; comme ω_1 est normé, $\sin\theta = 1$

donc $\theta = \frac{\pi}{2}$. R_1 est la [matrice de la] rotation d'angle $\frac{\pi}{2}$ et d'axe dirigé directement par (2,3,6).

9 On considère les matrices suivantes :

$$A_9 = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix} \quad B_9 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad C_9 = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ -2 & 2 & -1 \\ -2 & -1 & 2 \end{pmatrix} \quad S_9 = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \\ 2 & -1 & 2 \end{pmatrix}$$

- a) Montrer que ces matrices sont orthogonales et déterminer la nature des isométries canoniquement associées, respectivement appelées α_9 , β_9 , γ_9 et σ_9 .
- **b)** Montrer que σ_9 conserve les axes des rotations α_9 et β_9 .
- c) Trouver des matrices R_9 et T_9 telles que $A_9 = R_9 \times S_9$ et $C_9 = S_9 \times T_9$, et décrire les endomorphismes ρ_9 et τ_9 canoniquement associés.
- **d)** Décrire les isométries définies par $A_9 \times C_9$ et $A_9 \times B_9$.

a) Soit C_1 , C_2 , C_3 les colonnes de A_9 , alors $C_1 \cdot C_2 = \frac{1}{9}(4+1+4) = 1$, et $C_1 \wedge C_2 = \frac{1}{9}\binom{2}{2} = C_3$, donc A_9 est orthogonale et $\det(A_9) = 1 : A_9$ est une matrice de rotation. De même B_9 et C_9 sont des matrices de rotation. α_9 , β_9 , γ_9 sont des rotations

 S_9 est orthogonale et symétrique, donc est une matrice de symétrie orthogonale; comme $Tr(S_9)$ = $\frac{-1+2+2}{2} = 1$, donc det $(S_{ns}) = -1$, et σ_9 est une réflexion.

b) $B_9 - I_3 = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$, donc l'axe de β_9 est dirigé par $\Omega = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. On vérifie que $A_9 \cdot \Omega = \Omega$, et que

Puisque $\operatorname{Tr}(A_9) = \frac{2+2+2}{3} = 2 = 1+2\cos a$ avec $\cos a = \frac{1}{2}$, l'angle a de A_9 vérifie $\cos a = \frac{1}{2}$. Le signe

de son sinus est celui du déterminant $\det \begin{pmatrix} \vec{i}, C_1, \Omega \end{pmatrix} = \frac{1}{3} \begin{vmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & -1 & 1 \end{vmatrix} = 1 > 0$, donc $a = \frac{\pi}{3}$.

 α_9 est la rotation d'axe dirigé par $\Omega = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ et d'angle $\frac{\pi}{3}$

c) De même,

 β_9 est la rotation d'axe dirigé par Ω et d'angle $\frac{2\pi}{3}$, et γ_9 est la rotation d'axe dirigé par $\Omega' = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ et d'angle $\arccos \frac{1}{3}$. Enfin, comme $S_9 - I_3 = \frac{1}{3} \begin{pmatrix} -4 & 2 & 2 \\ 2 & -1 & -1 \\ 2 & -1 & -1 \end{pmatrix}$,

 σ est la réflexion par rapport au plan d'équation 2x - y - z = 0.

d) $A_9 = R_9 \times S_9$ équivaut à $R_9 = A_9 \times S_9 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, ce qui correspond à une réflexion par rapport au plan d'équation x = z.

 $C_9 = S_9 \times T_9$ équivaut à $T_9 = S_9 \times C_9 = \text{diag}(-1, 1, 1)$, ce qui correspond à une réflexion par rapport au plan d'équation x = 0.

e) $A_9 \times B_9$ est la rotation d'axe dirigé par $\Omega = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et d'angle π , donc un demi-tour. $A_9 \times C_9 =$

 $\frac{1}{3}$ $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$ est une symétrie orthogonale et une rotation, donc un demi-tour d'axe \vec{j}

 $\boxed{\mathbf{10}} \text{ Soit } (a, b, c, d) \in \mathbb{R}^4 \setminus \{(0, 0, 0, 0)\}, \text{ et } M = \begin{pmatrix} a^2 & ab & ac & ad \\ ab & b^2 & bc & bd \\ ac & bc & c^2 & cd \\ ad & bd & cd & d^2 \end{pmatrix}.$

Montrer que M est diagonalisable et donner ses valeurs propres, et les sous-espaces correspondants. Indication: quel est le rang de M?

Réponse : Posons $C = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, alors les colonnes de A sont $C_1 = aC$, $C_2 = bC$, $C_3 = cC$ et $C_4 = dC$, c'est-à-dire que $M = C^{\mathsf{T}}.C$.

M est de rang 1, donc 0 est valeur propre de M : dim $E_0(A) = 3$.

Nécessairement $X^3|\chi_M$, donc χ_M est scindé dans \mathbb{R} et $\chi_M = X^3(X - \lambda)$, avec $\lambda = \operatorname{Tr}(M) = a^2 + b^2 + c^2 + d^2 \neq 0$. Comme $\lambda \neq 0$, dim $E_{\lambda}(M) \geqslant 1$ et dim $E_0(M) + \dim E_{\lambda}(M) \geqslant 1 + 3 = 4$; M est alors diagonalisable, de valeurs propres 0 (triple) et $\lambda = a^2 + b^2 + c^2 + d^2$ (simple).

On peut également remarquer que M est symétrique réelle, donc diagonalisable, et que $E_{\lambda}(M) = (E_0(M))^{\perp}$.

 $E_0(M)$ est l'hyperplan d'équation cartésienne ax + by + cz + dt = 0; $E_{\lambda}(M) = \text{Vect}\begin{pmatrix} b \\ c \end{pmatrix}$

11 Montrer que la matrice $M = \begin{pmatrix} a & b & c \\ b & a+c & b \\ c & b & a \end{pmatrix}$ est diagonalisable dans une base orthonormale indépendante de a, b et c.

Réponse : *M* est symétrique réelle, donc elle est diagonalisable dans une base orthonormale en vertu du théorème spectral.

Avec
$$U = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
, $M.U = \begin{pmatrix} a-c \\ 0-a \end{pmatrix} = (a-c)U$, donc U est vecteur propre de M attaché à la valeur propre $a-c$.
$$M - (a+b\sqrt{2}+c)I_3 = \begin{pmatrix} b\sqrt{2}-c & b & c \\ b & b\sqrt{2} & b \\ c & b & c\sqrt{2}-b \end{pmatrix} \text{ vérifie } C_1 + C_3 = \sqrt{2}C_2 \text{, donc } V = \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix} \text{ est vecteur propre } C_1 + C_3 = \sqrt{2}C_2 \text{, donc } C_3 + C_3 = \sqrt{2}C_3 + C_3 + C_3 = \sqrt{2}C_3 \text{, donc } C_3 + C_3 = \sqrt{2}C_3 \text{,$$

propre de M associé à la valeur propre $a + b\sqrt{2} + c$. Comme Tr(M) = 3a + c, la troisième valeur propre est $a - b\sqrt{2} + c$; elle est associée à $W = U \wedge V$, donc à $\begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix}$

Finalement $M = P.\Delta.P^{\mathsf{T}}$ avec $\Delta = \text{diag}(a-c, a+b\sqrt{2}+c, a-b\sqrt{2}+c)$ et $P = \frac{1}{\sqrt{6}} \begin{pmatrix} \sqrt{3} & 1 & 1\\ 0 & 2 & -2\\ -\sqrt{3} & 1 & 1 \end{pmatrix}$

 $oldsymbol{A}$ Ne pas oublier de normer les vecteurs U, V, W!

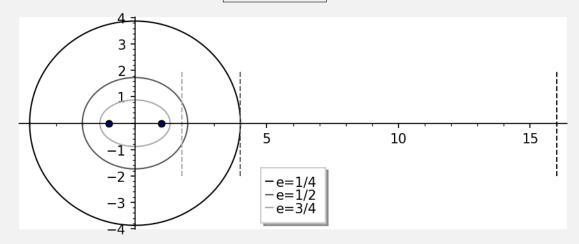
Thème: coniques

En fonction de l'excentricité $e \in]0,1[$, déterminer une équation cartésienne de la conique de foyers A': (-1,0) et A:(1,0).

Réponse : Puisque $e \in]0;1[$, la conique est une ellipse. Étant donné les coordonnées des foyers, c=1 et puisque $e = \frac{c}{a}$ donc $a = \frac{1}{a}$.

Comme, pour une ellipse, $c^2 + b^2 = a^2$, on obtient $e^2 a^2 + b^2 = a^2$ soit $b^2 = \frac{1 - e^2}{e^2}$, donc $b = \frac{\sqrt{1 - e^2}}{e}$.

Finalement, l'équation cartésienne est $e^2x^2 + \frac{e^2y^2}{1-e^2} = 1$.



13 Déterminer en fonction de $m \in \mathbb{R}$ la nature, l'excentricité et les foyers de la conique d'équation cartésienne B $x^2 + 2m x y + y^2 = 1$.

Réponse : La matrice symétrique associée à $x^2 + 2m x y + y^2$ est $S = \begin{pmatrix} 1 & m \\ m & 1 \end{pmatrix}$.

 $\chi_S = \begin{vmatrix} X - 1 & -m \\ -m & X - 1 \end{vmatrix} = (X - 1)^2 - m^2 = (X - m - 1)(X + m - 1), \text{ donc les valeurs propres de } S \text{ sont } m + 1 \text{ et } 1 - m.$

Une diagonalisation donne $S = P^{\mathsf{T}}$. diag(m+1, m-1).P, avec $P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$.

En posant $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = P \cdot \begin{pmatrix} x \\ y \end{pmatrix}$, l'équation de la conique devient $(1-m)x_1^2 + (m+1)y_1^2 = 1$.

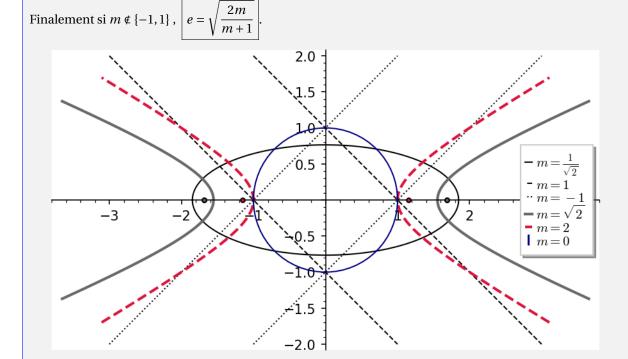
- ➤ si m = 1, alors $x^2 + 2 m x y + y^2 = (x + y)^2$, donc l'équation équivaut à $x + y = \pm 1$, ce qui correspond à deux droites parallèles;
- ▶ de même, si m = -1, alors $x^2 2mxy + y^2 = (x y)^2$, donc l'équation équivaut à $x y = \pm 1$, ce qui correspond à deux droites parallèles;
- ➤ si $m \in]-1,1[$, on obtient une ellipse avec $a = \frac{1}{\sqrt{1-m}}$ et $b = \frac{1}{\sqrt{1+m}}$. Alors $c^2 = a^2 b^2 = \frac{1}{1-m}$

$$\frac{1}{1+m} = \frac{2m}{1-m^2}$$
, puis $e = \frac{c}{a} = \frac{\sqrt{2m}}{\sqrt{1-m^2}} \sqrt{1-m}$. Les foyers sont $\left(\pm \sqrt{\frac{2m}{1-m^2}}, 0\right)$ dans le repère de l'équation réduite.

En particulier, m = 0 correspond à un cercle.

> si |m| > 1, on obtient une hyperbole avec $a = \frac{1}{\sqrt{m-1}}$ et $b = \frac{1}{\sqrt{1+m}}$. Alors $c^2 = a^2 + b^2 = \frac{1}{m-1} + \frac{1}{1+m} = \frac{2}{m^2-1}$, puis $e = \frac{c}{a} = \frac{\sqrt{2}}{\sqrt{m^2-1}}\sqrt{m-1}$. Les foyers sont $\left(\pm\sqrt{\frac{2}{1-m^2}},0\right)$ dans le repère de

l'équation réduite.



* Déterminer la nature et un paramétrage de la conique d'équation cartésienne $x^2 + xy + y^2 - x + y = 0$ puis son excentricité, la position des foyers et d'une directrice.

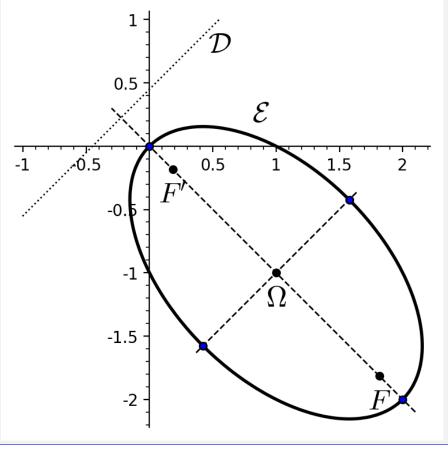
Réponse : $x^2 + xy + y^2 - x + y = x^2 + xy + y^2 - x + y = (x - y) \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - x + y$ Réduisons $S_1 = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}$; $\chi_{S_1} = \begin{vmatrix} X - 1 & -1/2 \\ -1/2 & X - 1 \end{vmatrix} = (X - 1)^2 - \frac{1}{4} = \left(X - \frac{1}{2}\right) \left(X - \frac{3}{2}\right)$. On obtient alors $S_1 = P_1 \Delta_1 . P_1^{\mathsf{T}}$ avec $P_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ et $\Delta_1 = \operatorname{diag} \left(\frac{3}{2}, \frac{1}{2}\right)$.

Posons alors $\binom{x}{y} = P_1 \binom{x_1}{y_1} = \frac{1}{\sqrt{2}} \binom{x_1 - y_1}{x_1 + y_1}$, $x^2 + y^2 + xy - x + y = \frac{3}{2}x_1^2 + \frac{1}{2}y_1^2 + \sqrt{2}y_1$; en posant $y_2 = y_1 + \sqrt{2}$, on obtient $\frac{1}{2}y_2^2 = \frac{1}{2}y_1^2 + \sqrt{2}y_1 + 1$ donc $x^2 + y^2 + xy - x + y = \frac{3}{2}x_1^2 + \frac{1}{2}y_2^2 - 1$.

Après une rotation du repère d'angle $\frac{\pi}{4}$, suivie d'une translation de vecteur $\sqrt{2}\vec{j}_1 = \vec{t} - \vec{j}$, on obtient une équation réduite : $\frac{3}{2}x_2^2 + \frac{1}{2}y_2^2 = 1$, qui est l'équation d'une ellipse de paramètres $(a, b) = \left(\frac{\sqrt{2}}{\sqrt{3}}, \sqrt{2}\right)$ de paramétres une rotation de vecteur $\sqrt{2}\vec{j}_1 = \vec{t} - \vec{j}$, on obtient une équation réduite : $\frac{3}{2}x_2^2 + \frac{1}{2}y_2^2 = 1$, qui est l'équation d'une ellipse de paramètres $(a, b) = \left(\frac{\sqrt{2}}{\sqrt{3}}, \sqrt{2}\right)$

trage est $t \mapsto (x(t), y(t)) = \left(-\sin t + 1 + \frac{\cos t}{\sqrt{3}}, \sin t - 1 + \frac{\cos t}{\sqrt{3}}\right) \operatorname{car}(x_2(t), y_2(t)) = \left(\sqrt{\frac{2}{3}}\cos(t), \sqrt{2}\sin t\right).$

D'après l'équation réduite, on trouve $a=\sqrt{2}, b=\sqrt{\frac{1}{3}}$, donc $c=\sqrt{a^2-b^2}=\frac{2}{\sqrt{3}}$ et $e=\sqrt{\frac{2}{3}}$. La distance entre le centre et la directrice est $d=\frac{a^2}{c}=\sqrt{3}$.



* Déterminer la nature et un paramétrage de la conique d'équation cartésienne $x^2 + 4xy - 2y^2 - 6x + 12y = 16$ puis son excentricité, la position des foyers et d'une directrice.

Réponse: $x^2 + 4xy - 2y^2 - 6x + 12y - 16 = 0 = (x y) \begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - 6x + 12y - 16$

Réduisons $S_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$; $\chi_{S_2} = \begin{vmatrix} X - 1 & -2 \\ -2 & X + 2 \end{vmatrix} = X^2 + X - 2 - 4 = (X - 2)(X + 3)$. On obtient alors $S_2 = P_2 \Delta_2 . P_2^{\mathsf{T}}$ avec $P_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$ et $\Delta_2 = \mathrm{diag}(2, -3)$.

Posons alors $\binom{x}{y} = P_2\binom{x_1}{y_1} = \frac{1}{\sqrt{5}}\binom{2x_1-y_1}{x_1+2y_1}$, $x^2 - 2y^2 + 4xy - 6x + 12y - 16 = 3x_1^2 - 2y_1^2 + 6\sqrt{5}y_1 - 16$; en posant $y_2 = y_1 + \sqrt{5}$, on obtient $\frac{1}{2}y_2^2 = \frac{1}{2}y_1^2 + 2\sqrt{5}y_1 + 5$ donc $x^2 - 2y^2 + 4xy - 6x + 12y - 16 = 2x_1^2 - 3y_2^2 - 1$.

Après une rotation du repère d'angle arccos $\frac{2}{\sqrt{5}}$, suivie d'une translation de vecteur $\sqrt{5}\vec{j}_1 = \vec{i} - \vec{j}$, on obtient

une équation réduite : $2x_2^2 - 3y_2^2 - 1$, qui est l'équation d'une hyperbole de paramètres $(a, b) = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}\right)$,

de paramétrage $t \mapsto \left(\pm\sqrt{2}\operatorname{ch}(t) - \frac{\operatorname{sh}(t)}{\sqrt{15}} - \frac{1}{\sqrt{3}}, \pm \frac{\operatorname{ch}(t)}{\sqrt{10}} - \frac{2\operatorname{sh}(t)}{\sqrt{15}} + \sqrt{2}\right), \operatorname{car}(x_2(t), y_2(t)) = \left(\pm\frac{\operatorname{ch}(t)}{\sqrt{2}}, \frac{\operatorname{sh}(t)}{\sqrt{3}}\right).$

D'après l'équation réduite, on trouve $a=\sqrt{\frac{7}{2}}, b=\sqrt{\frac{7}{3}},$ donc $c=\sqrt{a^2+b^2}=\sqrt{\frac{35}{6}}$ et $e=\sqrt{\frac{5}{3}}$. La distance entre le centre et la directrice est $c=\sqrt{\frac{35}{6}}$ et $c=\sqrt{\frac{5}{3}}$.

