Cocher la/les case(s) correspondant à la/aux bonne(s) réponse(s). N'imprimer que la première page si nécessaire.

- 1) Le rayon de convergence de $\sum_{n>0} \frac{2(-1)^n}{3^n} x^{2n}$ est
- b 3;
- $\boxed{\mathbf{c}}\sqrt{3};$
- $|\mathbf{d}| \sqrt{3}$.

réponse

- 2) $\sum_{n>1} \frac{x^n}{n}$
 - a un rayon de convergence infini;
- b a un rayon de convergence égal à 1;

- C a pour somme $\ln(1+x)$;
- \mathbf{d} a pour somme $-\ln(1-x)$.

réponse

- 3) $\sum_{n>1} \frac{e^{\frac{in\pi}{7}}}{n} x^n$
 - a pour rayon de convergence 1;

- b est dérivable sur] 1;1[;
- **C** a pour dérivée sur] 1;1[: $\frac{1}{1-xe^{\frac{i\pi}{7}}}$. **d** sa série dérivée converge en 1;

réponse

- **4)** $\sum \frac{x^n}{n^2}$
 - a a pour rayon de convergence 1;

 \mathbf{b} est définie sur [-1;1];

- $\boxed{\mathbf{C}}$ est \mathscr{C}^{∞} sur [-1;1];
- d a pour dérivée seconde $\frac{1}{1-r}$.
- réponse

- **5)** $\sum_{n\geq 0} \frac{x^{n!}}{n!}$
 - a a un rayon de convergence infini;
- ba pour rayon de convergence 1;

- $\boxed{\mathbf{C}}$ a pour somme $\frac{1}{1-r}$;
- d a pour somme e^x .

- 6) $\frac{1}{(1+r)^2}$ a pour développement en série entière :
 - $\boxed{\mathbf{a}} \sum_{n=0}^{+\infty} (-1)^n \binom{n}{2} x^n; \qquad \boxed{\mathbf{b}} \sum_{n=0}^{+\infty} (-1)^n (n+1) x^n; \qquad \boxed{\mathbf{c}} \sum_{n=1}^{+\infty} (-1)^n \frac{x^n}{n}; \qquad \boxed{\mathbf{d}} \sum_{n=0}^{+\infty} (1)^n x^{2n}.$

- 7) $\frac{1}{\arctan x}$ a pour développement en série entière : $a \sum_{n=0}^{+\infty} \frac{(-1)^n x^n}{n}$; $b \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$; $c \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$; $d \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}$.

- réponse

- **8)** $\sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$ a pour somme:
- $|\mathbf{b}|_{\mathrm{ch}\,x}$;
- c e^{x^2} ; d $\frac{\sinh(x)}{x}$.
- **9)** On considère la série entière $\sum_{n\geq 0} a_n x^n$, de rayon de convergence R et de somme S(x) sur]-R; R[.
 - $a \mid S \text{ est } \mathscr{C}^{\infty} \text{ sur }] R; R[;$
- $|\mathbf{b}|$ réciproquement, toute fonction \mathscr{C}^{∞} sur]-R;R[est DSE;
- $\boxed{\mathbf{C}}$ Si $\lim_{x \to R} f(x)$ existe, alors f est continue sur [0; R];

réponse

- **10)** a $\frac{1}{\sqrt{1-x}} = 1 + \frac{x}{2} + \frac{3}{8}x^2 + o(x^3);$
- $\boxed{\mathbf{a}} \frac{1}{\sqrt{1-x}} = 1 + \frac{x}{2} + \frac{3}{8}x^2 + o(x^3); \qquad \qquad \boxed{\mathbf{b}} \frac{1}{\sqrt{1-x}} = \sum_{n=0}^{+\infty} \frac{(2n)!}{(2^n n!)^2} x^n;$ $\boxed{\mathbf{c}} \sqrt{1-x} = 1 \frac{x}{2} \frac{x^2}{8} \frac{x^3}{16} + o(x^4); \qquad \boxed{\mathbf{d}} \sqrt{1-x} = 1 \sum_{n=0}^{+\infty} \frac{x^2}{2^{2^n}}.$
- réponse

1) Le rayon de convergence de $\sum_{n\geq 0} \frac{2(-1)^n}{3^n} x^{2n}$ est $\boxed{a} \frac{3}{2};$ $\boxed{b} 3;$ $\boxed{c} \sqrt{3};$

d $-\sqrt{3}$.

Réponse juste : $\boxed{\mathbf{C}}$. En posant $u_n = \frac{2(-1)^n}{3^n} x^{2n}$ pour $x \neq 0$, on obtient après simplification $\frac{u_{n+1}}{u_n} = -3x^2$; alors $\sum u_n$ converge absolument si $|x| < \sqrt{3}$ (donc $R \ge \sqrt{3}$) et diverge grossièrement si si $|x| > \sqrt{3}$ (donc $R \le \sqrt{3}$). Finalement $R = \sqrt{3}$ Finalement $R = \sqrt{3}$.

 $2) \sum_{n \ge 1} \frac{x^n}{n}$

a un rayon de convergence infini;

b a un rayon de convergence égal à 1; d a pour somme $-\ln(1-x)$.

 \overline{C} a pour somme $\ln(1+x)$;

 C a pour somme $\ln(1+x)$;
 u a pour somme $-\ln(1-x)$.

 Réponses justes : \mathbf{b} et \mathbf{c} . $\sum_{n\geqslant 1}\frac{x^n}{n}$ a le même rayon de convergence que sa série dérivée $\sum_{n\geqslant 1}x^{n-1}$, donc 1; la somme de la dérivée est $\frac{1}{1-x}$. La somme de la série est donc la primitive qui s'annule en 0 de $x\mapsto \frac{1}{1-x}$, soit $-\ln(1-x)$.

3)
$$\sum_{n>1} \frac{e^{\frac{in\pi}{7}}}{n} x^n$$

 \boxed{a} a pour rayon de convergence 1; \boxed{c} a pour dérivée sur $]-1;1[:\frac{1}{1-xe^{\frac{i\pi}{7}}}.$

b est dérivable sur] – 1;1[;
b sa série dérivée converge en 1;

Réponses justes : $\boxed{\mathbf{a}}$ et $\boxed{\mathbf{b}}$. $\sum_{n \ge 1} \frac{\mathrm{e}^{\frac{in\pi}{7}}}{n} x^n$ a le même rayon de convergence que $\sum_{n \ge 1} \mathrm{e}^{\frac{in\pi}{7}} x^n$, c'est-à-dire 1, donc la fonction somme est dérivable sur] -1; 1[. La série entière dérivée est $\sum_{n \ge 1} \mathrm{e}^{\frac{in\pi}{7}} x^{n-1}$ soit $\mathrm{e}^{\frac{i\pi}{7}} \sum_{m \ge 0} \mathrm{e}^{\frac{im\pi}{7}} x^m$; elle diverge grossièrement en 1, et sa somme vaut

$$\frac{e^{\frac{i\pi}{7}}}{1-xe^{\frac{i\pi}{7}}}$$
, donc \swarrow et \bigcirc dont fausses.

4) $\sum_{n \ge 1} \frac{x^n}{n^2}$

a pour rayon de convergence 1;

C est \mathscr{C}^{∞} sur [-1;1];

b est définie sur [-1;1]; d a pour dérivée seconde $\frac{1}{1-x}$.

Réponses justes : $\boxed{\mathbf{a}}$ et $\boxed{\mathbf{b}}$. $\sum_{n \ge 1} \frac{x^n}{n^2}$ a le même rayon de convergence que $\sum_{n \ge 1} \frac{x^n}{n}$ et $\sum_{n \ge 1} x^n$, soit 1. Cette série converge si $x = \pm 1$, et diverge grossièrement si |x| > 1. L'ensemble de définition de la fonction réelle asscoiée est dene [1:1] est donc [-1;1].

La série dérivée est $\sum_{n\geq 1} \frac{x^{n-1}}{n}$, qui diverge en 1; et même, par croissance, $\lim_{x\to 1_{-}} S'(x) = +\infty$, donc la fonction n'est pas dérivable en 1, et encore moins \mathscr{C}^{∞} sur [-1;1]. $\boxed{\mathbf{C}}$ est fausse.

La série dérivée seconde est elle $\sum_{n\geqslant 2} \frac{n-1}{n} x^{n-2}$ soit $\sum_{m\geqslant 0} \frac{m+1}{m+2} x^m$, dont la somme diffère de $\frac{1}{1-x} = \sum_{m=0}^{+\infty} x^m$. d est fausse.

 $5) \sum_{n \geq 0} \frac{x^{n!}}{n!}$

a a un rayon de convergence infini;

C a pour somme $\frac{1}{1-x}$;

b a pour rayon de convergence 1; d a pour somme e^x .

Réponse juste : a. En posant $u_n = \frac{x^{n!}}{n!}$ pour $x \neq 0$, $\frac{u_{n+1}}{u_n} = x^{(n+1)!-n!} \frac{n!}{(n+1)!} = \frac{x^{n\,n!}}{n+1}$ qui tend vers 0 si $|x| \leq 1$ (donc $R \geq 1$) et vers $+\infty$ si x > 1 (donc $R \leq 1$). Finalement T = 1, et $x \in \mathbb{R}$ est fausse. retour au QCM

6) $\frac{1}{(1+x)^2}$ a pour développement en série entière :

$$\boxed{a} \sum_{n=0}^{+\infty} (-1)^n \binom{n}{2} x^n; \qquad \boxed{b} \sum_{n=0}^{+\infty} (-1)^n (n+1) x^n; \qquad \boxed{c} \sum_{n=1}^{+\infty} (-1)^n \frac{x^n}{n}; \qquad \boxed{d} \sum_{n=0}^{+\infty} (1)^n x^{2n}.$$

Réponse juste : $\boxed{\mathbf{b}}$. $\frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n$ pour |x| < 1, donc par dérivation $\frac{-1}{(1+x)^2} = \sum_{n=1}^{+\infty} (-1)^n n x^{n-1}$ puis par décalage d'indice m = n-1: $\frac{1}{(1+x)^2} = \sum_{n=0}^{+\infty} (-1)^n (n+1) x^n$. $\binom{n}{2} = \frac{n(n-1)}{2} \neq n+1$ donc $\boxed{\mathbf{A}}$ est fausse, ainsi que $\boxed{\mathbf{A}}$ bien sûr. $\sum_{n=0}^{+\infty} (1)^n x^{2n} = \frac{1}{1+x^2} \neq \frac{1}{(1+x)^2}$ en général : $\boxed{\mathbf{A}}$ est fausse.

7)
$$\arctan x$$
 a pour développement en série entière :
$$\boxed{a} \sum_{n=0}^{+\infty} \frac{(-1)^n x^n}{n}; \qquad \boxed{b} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}; \qquad \boxed{c} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{2n+1}; \qquad \boxed{d} \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{2n+1}.$$
Réponse juste : \boxed{b} . On peut le vérifier par dérivation : $\arctan' x = \frac{1}{1+x^2}$

8) $\sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!}$ a pour somme:

 $a \cos x;$ $b \cot x;$ $c e^{x^2};$

Réponse juste : \mathbf{b} . $\cos x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ et $e^{x^2} = \sum_{n=0}^{+\infty} \frac{x^{2n}}{n!}$, donc \mathbf{b} et \mathbf{z} sont fausses. retour au QCM

- **9)** On considère la série entière $\sum_{n\geqslant 0}a_nx^n$, de rayon de convergence R et de somme S(x) sur]-R; R[.
 - [a] S est \mathscr{C}^{∞} sur]-R; R[; [b] réciproquement, toute fonction \mathscr{C}^{∞} sur]-R; R[est DSE; C Si $\lim_{x\to R_{-}} f(x)$ existe, alors f est continue sur [0;R].

Réponse juste : $\boxed{\mathbf{a}}$. Il existe des fonction de classe \mathscr{C}^{∞} sur \mathbb{R} qui ne coïncident pas avec leur développement de Taylor; ainsi, si on pose $g(x) = \mathrm{e}^{\frac{-1}{x^2}}$ pour $x \neq 0$ et g(0) = 0, on obtient une fonction indéfiniement dérivable sur \mathbb{R} , telle que $g^n(0) = 0$ pour tout $n \in \mathbb{N}$. g n'est donc pas DSE : $\boxed{\mathscr{V}}$ est fausse.

De plus, est fausse : un contre-exemple est $x \mapsto \sum_{n=0}^{+\infty} (-1)^n x^n$ en x = 1. Pour |x| < 1, $\sum_{n=0}^{+\infty} (-1)^n x^n = \frac{1}{1+x}$, donc $\lim_{x \to 1_-} f(x) = \frac{1}{2}$ et pourtant f(1) diverge, donc f(1) n'est pas définie.

Réponses justes :
$$\boxed{\mathbf{a}}$$
, $\boxed{\mathbf{b}}$ et $\boxed{\mathbf{c}}$. Avec $\alpha = \frac{-1}{2}$, $\frac{1}{\sqrt{1-x}} = \sum_{n=0}^{+\infty} a_n (-1)^n x^n$ avec $a_n = \frac{1}{n!} \prod_{k=0}^{n-1} (\alpha - k) = \frac{1}{n!} \prod_{k=0}^{n-1} -\frac{1+2k}{2} = \frac{(-1)^n}{2^n n!} \prod_{k=0}^{n-1} (1+2k) = \frac{(-1)^n (2n)!}{(2^n n!)^2}$, donc $\frac{1}{\sqrt{1-x}} = \sum_{n=0}^{+\infty} \frac{(2n)!}{(2^n n!)^2} x^n = 1 + \frac{x}{2} + \frac{3}{8} x^2 + o(x^3)$, d'où $\boxed{\mathbf{a}}$ et $\boxed{\mathbf{b}}$.

Un calcul analogue avec $\alpha = \frac{1}{2}$, ou bien l'intégration de l'égalité ci-dessus, donne \mathbb{C} . Les premières valeurs de n montrent que \mathbb{A} est fausse.