Cocher la/les case(s) correspondant à la/aux bonne(s) réponse(s). N'imprimer que la première page si nécessaire.

1) Une courbe paramétrée $t \mapsto M(t)$ présente une branche infinie lorsque :

 $a \mid t \to +\infty \text{ (parfois)};$

 $|\mathbf{b}|t \rightarrow t_0$, avec $\vec{M}'(t_0) = 0$;

 $\boxed{\mathbf{C}}$ $t \to t_0$, avec $||M'(t_0)|| \to +\infty$;

d $t \to t_0$, avec $||M(t_0)|| \to +\infty$.

réponse

2) La courbe paramétrée définie par $(x(t), y(t)) = (1 - \cos t, \sin^2 t)$:

a est symétrique par rapport à O_x ;

b est symétrique par rapport à *O*;

c est symétrique par rapport à la droite $x = \frac{1}{2}$, car $M(\pi - t) = ...$ d peut être étudiée sur $0; \frac{\pi}{2}$

3) La courbe paramétrée précédente $((x(t), y(t)) = (1 - \cos t, \sin^2 t))$ passe par O en présentant :

a un point de rebroussement de première espèce

 $|\mathbf{b}|$ un point d'inflexion;

C un point ordinaire;

d une tangente d'équation $y = \frac{x}{2}$;

4) La courbe paramétrée définie par $(x(t), y(t)) = \left(\frac{t^2}{1+t}, \frac{t^3}{1+t}\right)$ présente :

a une asymptote verticale en t = -1;

b une asymptote oblique en t = -1;

 $\overline{\mathbf{c}}$ une asymptote oblique en $t \to +\infty$; \mathbf{d} un point singulier à tangente horizontale en t = 0. réponse

5) Soit γ un arc paramétré de classe \mathscr{C}^2 ,

 $\mathbf{a} \mid \vec{N}$ est dirigé directement par \vec{a}_N ;

 $|\mathbf{b}|_{R} > 0$ si la courbe tourne à gauche;

|C|R = 0 en tout point d'inflexion; |d|R change de signe en tout point d'inflexion.

6) Soit \mathcal{S} la spirale logarithmique paramétrée par $(x(t), y(t)) = \left(e^{-\frac{t}{5}}\cos t, e^{-\frac{t}{5}}\sin t\right)$. Si $O = M(+\infty)$ et A = M(0), la longueur de l'arc AO est

 $\boxed{\mathbf{b}} \frac{\sqrt{26}}{5} \int_0^{+\infty} e^{-\frac{t}{5}} dt \qquad \boxed{\mathbf{c}} \int_0^{+\infty} e^{-\frac{t}{5}} dt \qquad \boxed{\mathbf{d}} \int_0^{+\infty} e^{-\frac{2t}{5}} dt$

7) Soit (C) un arc de classe \mathscr{C}^2 , s son abscisse curviligne et (\vec{T}, \vec{N}) la base de Frenet, le rayon R de courbure

 $\boxed{\mathbf{a}} \frac{\mathrm{d}\vec{T}}{\mathrm{d}s} = \frac{1}{R}\vec{N}; \qquad \boxed{\mathbf{b}} \frac{\mathrm{d}\vec{N}}{\mathrm{d}t} = R\vec{T}; \qquad \boxed{\mathbf{c}} \frac{\mathrm{d}\vec{N}}{\mathrm{d}s} = \frac{1}{R}\vec{T}; \qquad \boxed{\mathbf{d}} \frac{\mathrm{d}s}{\mathrm{d}t} \frac{1}{R} = \vec{N} \cdot \frac{\mathrm{d}\vec{T}}{\mathrm{d}t}$

réponse

8) La développée d'un cercle C est

a le centre du cercle;

b un cercle concentrique à *C*, de rayon non nul;

C l'ensemble vide;

d un carré inscrit dans le cercle.

réponse

9) La développée d'un arc (C) de classe \mathscr{C}^2 est

a le lieu de ses centres de courbure;

b l'enveloppe des tangentes à (C);

 \mathbf{C} l'enveloppe des normales à (C);

réponse

10) Soit γ un arc régulier de classe \mathscr{C}^2 , et M(t) un point de γ ; le cercle de courbure $\mathscr{C}(I,R)$:

a est normal à γ en M(t);

b rencontre γ en un seul point;

 \mathbf{C} est osculateur à γ en M(t);

 $|\mathbf{d}|$ est tangent à γ en M(t).

réponse

1) Une courbe paramétrée $t \mapsto M(t)$ présente une branche infinie lorsque :

$$\begin{array}{c|c} \hline a & t \to +\infty; \\ \hline c & t \to t_0, \, avec \, ||M'(t_0)|| \to +\infty; \\ \hline \end{array}$$

$$\begin{array}{c|c} \hline b & t \to t_0, \, avec \, ||M'(t_0)|| \to +\infty. \\ \hline \end{array}$$

.....

Réponses justes : a et d

Lorsque t tend vers $+\infty$, si x(t) et y(t) convergent, la courbe présente un point asymptote qui peut être une branche infinie (une spirale) ou non (un point asymptote ordinaire, si x et y sont monotones au voisinage de t_0).

En revanche, si $||M(t_0)|| \to +\infty$, on obtient forcément une branche infinie (éventuellement exotique) : $\boxed{\mathbf{d}}$ est vraie.

 $\vec{M}'(t_0) = 0$ caractérise un point singulier, et $\|M(t_0)\| \to +\infty$ n'a pas de signification claire (par exemple, si $(x(t),y(t)) = \left(\sqrt[3]{2t},\sqrt[3]{t/4}\right)$ en t=0 correspond à un point ordinaire d'une droite banale. \nearrow sont fausses. retour au QCM

<i>2)</i>	La courbe paramétrée définie par $(x(t), y(t)) = (1 - \cos t, \sin^2 t)$:
	a est symétrique par rapport à O_x ; b est symétrique par rapport à O ;
	est symétrique par rapport à la droite $x = 1$, $car M(\pi - t) =$ d peut être étudiée $sur \left] 0; \frac{\pi}{2} \right[$
	Réponses justes : \mathbf{c} et \mathbf{d} .
	x et y sont 2π -périodiques et paires toutes deux, ce qui ne correspond à aucune symétrie géométrique, mais montre que toute la courbe est décrite pour $t \in [0\pi]$.
	Comme y n'est pas impair, \mathcal{A} et \mathcal{B} sont fausses.
	Un calcul montre que $M(\pi - t) = (1 + \cos t, \sin^2 t)$, donc le milieu de $M(\pi, t)$ et $M(0, t)$ est sur la droite d'équation
	$x = 1$. Alors la courbe est symétrique par rapport à la droite $x = 1$, et peut être étudiée sur $\left]0; \frac{\pi}{2}\right[$.
	retour au QCM

3) La courbe paramétrée précédente $((x(t), y(t)) = (1 - \cos t, \sin^2 t))$ passe par O en présentant :

a un point de rebroussement de première espèce

b un point d'inflexion;

.....

C un point ordinaire;

d une tangente d'équation y = 2x;

réponse

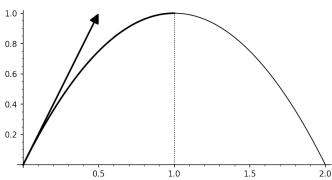
Réponses justes : a et d

Puisque $(x'(t), y'(t)) = (\sin t, 2\sin t\cos t), (x'(t), y'(t)) = (0, 0)$ donc M(0) est un point singulier;

Comme M(-t) = M(t), la courbe présente un point de rebroussement en M(0), sans traverser sa tangente ; donc

 \boxed{a} est vraie, \boxed{b} et \boxed{c} sont fausses.

 $M''(t) = (\cos t, 2\cos(2t))$, donc la tangente en M(0) est dirigée par (1,2): d est vraie.



4) La courbe paramétrée définie par $(x(t), y(t)) = \left(\frac{t^2}{1+t}, \frac{t^3}{1+t}\right)$ présente :

 \overline{a} une asymptote verticale en t = -1;

b une asymptote oblique en t = -1;

C une asymptote oblique en $t \to +\infty$;

d un point singulier à tangente horizontale en t = 0.

Réponses justes : b et d.

 $\lim_{t \to -1_+} x(t) = +\infty$ mais $\lim_{t \to -1_-} y(t) = +\infty$, ce qui exclut une asymptote verticale. $\boxed{\mathbb{A}}$ est fausse.

 $\frac{y(t)}{x(t)} = t, \text{ donc } \lim_{t \to -1} \frac{y(t)}{x(t)} = -1 \text{ et } y(t) + x(t) = \frac{t^3 + t^2}{t+1} = t^2, \text{ donc } \lim_{t \to -1} y(t) + x(t) = 1. \text{ Il y a donc bien une asymptote oblique en } t = -1. \boxed{\mathbf{b}} \text{ est vraie.}$

 $\lim_{t \to -1} \frac{y(t)}{x(t)} = +\infty, \text{ donc la branche infinie en } +\infty \text{ est une branche parabolique d'axe } O_y : \mathcal{L} \text{ est fausse.}$ $x(t) = t^2 - t^3 + o(t^3), \ y(t) = t^3 + o(t^3), \text{ donc } M'(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, M''(0) = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}, M'''(0) = 6 \begin{pmatrix} -1 \\ 1 \end{pmatrix}; \text{ ainsi } p = 2 \text{ et } q = 3.$

M(0) est un point singulier à tangente horizontale. $\boxed{\mathbf{d}}$ est vraie.

5)	5) Soit γ un arc paramétré de classe \mathscr{C}^2 ,	
	a \vec{N} est dirigé directement par $\vec{\gamma}_N$; b $R > 0$ si la courbe	tourne à gauche;
	C $R = 0$ en tout point d'inflexion; d R change de signe en to	ut point d'inflexion.
	Réponse juste : b et d.	
	Si le rayon de courbure de γ est négatif, alors $\vec{\gamma}_N$ est de sens opposé à \vec{N} don	est fausse.
	La courbe tourne à gauche si, et seulement si, $R > 0$: \boxed{b} est vraie.	
	En un point d'inflexion, R change de signe en tendant vers $+\infty$, donc \nearrow es	t fausse et d vraie. retour au
	QCM	

6) Soit \mathcal{S} la spirale logarithmique paramétrée par $(x(t), y(t)) = \left(e^{-\frac{t}{5}} \cos t, e^{-\frac{t}{5}} \sin t\right)$. Si $O = M(+\infty)$ et A = M(0), la longueur de l'arc AO est

a infinie

$$\boxed{b} \frac{\sqrt{26}}{5} \int_0^{+\infty} e^{-\frac{t}{5}} dt \qquad \boxed{c} \int_0^{+\infty} e^{-\frac{t}{5}} dt \qquad \boxed{d} \int_0^{+\infty} e^{-\frac{2t}{5}} dt$$

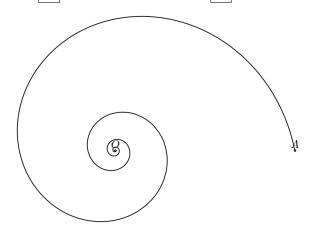
$$C \int_0^{+\infty} e^{-\frac{t}{5}} dt$$

$$\int_0^{+\infty} e^{-\frac{2t}{5}} dt$$

Réponse juste : \mathbf{b} . $\vec{M}'(t) = \frac{1}{5}e^{-\frac{t}{5}}(-\cos t - 5\sin t, -\sin t + 5\cos t)$ donc $\|\vec{M}'(t)\|^2 = \frac{1}{25}e^{-\frac{2t}{5}}(\cos^2 t + 25\sin^2 t + 10\sin t\cos t + 10\sin t\cos t)$

 $\frac{25+1}{25}e^{-\frac{2t}{5}}, \operatorname{donc} \frac{ds}{dt} = \frac{\sqrt{26}}{5}e^{-\frac{t}{5}}.$ Par définition, $\int_{0}^{+\infty} e^{-\frac{t}{5}} dt = \lim_{x \to +\infty} \int_{0}^{x} e^{-\frac{t}{5}} dt = \lim_{x \to +\infty} -5 \left[e^{-\frac{t}{5}} \right]_{0}^{x} = 5 \neq +\infty.$

 $\mathsf{Donc}\, \boxed{\mathcal{A}} \ \mathsf{est} \ \mathsf{fausse}, \ \mathsf{et} \ \boxed{b} \ \mathsf{est} \ \mathsf{vraie} \, ; \ \boxed{\mathcal{C}} \ \mathsf{est} \ \mathsf{fausse}. \ \mathsf{On} \ \mathsf{peut} \ \mathsf{v\'erifier} \ \mathsf{que} \ \boxed{\mathcal{A}} \ \mathsf{est} \ \mathsf{fausse}.$



7) Soit (C) un arc de classe \mathscr{C}^2 , s son abscisse curviligne et (\vec{T}, \vec{N}) la base de Frenet, le rayon R de courbure vérifie : $\boxed{a} \frac{d\vec{T}}{ds} = \frac{1}{R}\vec{N}; \qquad \boxed{b} \frac{d\vec{N}}{dt} = R\vec{T}; \qquad \boxed{c} \frac{d\vec{N}}{ds} = \frac{1}{R}\vec{T}; \qquad \boxed{d} \frac{ds}{dt} \frac{1}{R} = \vec{N} \cdot \frac{d\vec{T}}{dt}$

$$\boxed{a} \frac{d\vec{T}}{ds} = \frac{1}{R}\vec{N}$$

$$b \frac{d\vec{N}}{dt} = R\vec{T};$$

$$\boxed{C} \frac{\mathrm{d}\vec{N}}{\mathrm{d}s} = \frac{1}{R}\vec{T};$$

$$\boxed{d} \frac{\mathrm{d}s}{\mathrm{d}t} \frac{1}{R} = \vec{N} \cdot \frac{\mathrm{d}\vec{T}}{\mathrm{d}t}$$

 $\hbox{R\'eponses justes}: \boxed{a} \hbox{ et } \boxed{d}.$

a est la définition de
$$\gamma = \frac{1}{R}$$
.

$$\frac{\mathrm{d}\vec{N}}{\mathrm{d}t} = \det st \frac{\mathrm{d}\vec{N}}{\mathrm{d}s} = -\gamma \det st \vec{T} = \frac{-1}{R} \det st \vec{T}, \text{ et en général } \frac{\mathrm{d}s}{\mathrm{d}t} \neq -1, \text{ donc } \boxed{\not b} \text{ est fausse.}$$

$$\frac{d\vec{N}}{ds} = -\frac{1}{R}\vec{T}$$
, donc est fausse.

$$\vec{N} \cdot \frac{d\vec{T}}{dt} = \frac{ds}{dt} \vec{N} \cdot \frac{d\vec{T}}{ds} = \frac{ds}{dt} \vec{N} \left(\frac{1}{R} \cdot \vec{N} \right) = \frac{ds}{dt} \frac{1}{R}, \text{ donc }$$
est fausse.

8)	La développée d'un cercle C est	
•	a le centre du cercle;	b un cercle concentrique à C, de rayon non nul;
	C l'ensemble vide;	$\overline{}$ un carré inscrit dans le cercle.
	Réponse juste : a .	
		stante, et égal à son rayon ; le centre de courbure du cercle est son centre.
	a est vraie.	
	Pour le coup, , et sont faus	ses.
		retour au QCM

9)	La développée d'un arc (C) de classe \mathscr{C}^2 est
	a le lieu de ses centres de courbure; b l'enveloppe des tangentes à (C) ;
	\overline{C} l'enveloppe des normales à (C) ;
	Réponse juste : $\begin{bmatrix} \mathbf{a} \end{bmatrix}$ et $\begin{bmatrix} \mathbf{c} \end{bmatrix}$.
	Le cours affirme que $\boxed{\mathbf{a}}$ et $\boxed{\mathbf{c}}$ sont vraies.
	L'enveloppe des tangentes à (C) est (C), qui est différente de (C) en général 😿 est fausse. retour au QCM

10) Soit γ un arc régulier de classe \mathscr{C}^2 , et M(t) un point de γ ; le cercle de courbure $\mathscr{C}(I,R)$:

a est normal $a \gamma$ en M(t);

b rencontre γ en un seul point;

C est osculateur à γ en M(t);

d est tangent à γ en M(t).

Réponses justes : \boxed{c} et \boxed{d} .

- d est vraie, ce qui implique bien sûr que a est fausse.
- c est vraie. est souvent fausse, comme le montre la figure ci-dessous :

