MATRICES ET DÉTERMINANTS **CHAPITRE 1bis** 2024/2025

Dans ce chapitre, E désigne un espace vectoriel sur le corps $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 — Rappels sur les matrices

En première année, vous avez vu la définition d'une matrice comme tableau de chiffres et son interprétation comme représentante d'une application linéaire de \mathbb{K}^p dans \mathbb{K}^n (pour une matrice à n lignes et p colonnes).

1.1 – Matrices de taille quelconque

Propriété 1 : espace $\mathcal{M}_{n,n}(\mathbb{K})$

L'ensemble des matrices à coefficients dans \mathbb{K} , à n lignes et p colonnes, est un espace vectoriel sur \mathbb{K} de dimension n.p, noté $\mathcal{M}_{n,p}(\mathbb{K})$.

Sa base canonique est $(E_{i,j})_{1 \le i \le n, 1 \le j \le p}$ où tous les coefficients de la matrice $E_{i,j}$ sont nuls, sauf celui de la $i^{\text{ème}}$

ligne et $j^{\text{ème}}$ colonne qui vaut 1. Si $(k,l) \in [[1,n]]^2$, $E_{l,k} = \left(\delta_{l,i}\delta_{k,j}\right)_{1 \leq i,j \leq n}$.

Propriété 2 : règles de calcul dans $\mathcal{M}_{n,n}(\mathbb{K})$

Soit A, B, C trois matrices de taille adaptée, et $\lambda \in \mathbb{K}$, alors, sous réserve d'existence des produits :

$$A.(B.C) = (A.B).C$$

$$A.(\lambda B + C) = \lambda A.B + A.C$$

$$(\lambda A + B).C = \lambda A.C + B.C$$

$$(\lambda A + B).T = \mathbf{A}.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T + B.T$$

$$(\lambda A + B).T = \lambda A.T$$

 $(\lambda A + B)^{T} = \lambda A^{T} + B^{T}$ (0).A = (0) = A.(0)

 \triangle en général : $A.B \neq B.A$ (même lorsque que les deux termes existent simultanément), et en général $A.B = (0) \implies A = (0)$ ou B = (0).

Définition : rang d'une matrice

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. On appelle **rang de** A:

- * le rang de l'application linéaire [canoniquement] associée à A;
- * le nombre de colonnes non nulles après pivot de Gauss sur les colonnes de A;
- * le nombre de lignes non nulles après pivot de Gauss sur les lignes de A.

Ces trois entiers sont bien sûr égaux.

Propriété 3: systèmes linéaires et matrices

Tout système à n équations et p inconnues peut se mettre sous la forme A.X = B, où $A \in \mathcal{M}_{n,p}(\mathbb{K})$, $X \in \mathcal{M}_{n,p}(\mathbb{K})$ $\mathcal{M}_{p,1}(\mathbb{K})$ est la matrice-colonne des inconnues, et $B \in \mathcal{M}_{p,1}(\mathbb{K})$ est la matrice-colonne du second membre. Alors le système admet des solutions si et seulement si $B \in \text{Im}(A)$, et, dans ce cas, l'ensemble des solutions est de la forme $X_0 + S$, où S = Ker(A) est de dimension p - rg(A).

1.2 – matrices carrées

Propriété 4 : espace $\mathcal{M}_n(\mathbb{K})$

L'ensemble des matrices à coefficients dans \mathbb{K} , carrées d'ordre n, est un espace vectoriel sur \mathbb{K} de dimension n^2 , noté $\mathcal{M}_n(\mathbb{K})$ et stable par multiplication.

Définition et propriété : matrice inversible

Si $A \in \mathcal{M}_n(\mathbb{K})$, on dit que A est inversible si, et seulement si, une des propriétés équivalentes suivantes est vérifiée :

- ★ A représente canoniquement un isomorphisme;
- * $A \sim I_n$ (la matrice identité d'ordre n)
- \star le rang de A est égal au nombre de colonnes de A;
- ★ il existe une matrice C telle que $C.A = I_n$;
- ★ il existe une matrice C telle que $A.C = I_n$;
- \star pour tout B, le système A.X = B admet pour unique solution $X = A^{-1}.B$.
- \star pour tout *B*, le système *A*.*X* = *B* admet au moins une solution.

Définition : ensemble des matrices carrées inversibles

L'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$ est noté $\mathrm{GL}_n(\mathbb{K})$ et *appelé groupe linéaire* de \mathbb{K} .

Définition : puissances d'une matrice

Soit $A \in \mathcal{M}_n(\mathbb{K})$, et $m \in \mathbb{N}$; on définit les **puissances successives de** A par récurrence :

$$A^{0} = I_{n}$$
 et $A^{m+1} = A \cdot A^{m} = A^{m} \cdot A^{m}$

De plus, si A est inversible, $A^{-m} = (A^{-1})^m$, ce qui permet de définir A^m pour $m \in \mathbb{Z}$.

Alors $A^{p+q} = A^p . A^q$ et $(A^p)^q = A^{pq}$ pour tout couple d'entiers $(p,q) \in \mathbb{N}^2$ $((p,q) \in \mathbb{Z}^2$ si A est inversible).

Propriété 5 : binôme de Newton

Soit *A* et *B* deux matrices qui commutent, c'est-à-dire que A.B = B.A, et $m \in \mathbb{N}$, alors

$$(A+B)^m = \sum_{k=0}^m \binom{m}{k} A^k B^{m-k}$$

Propriété 6: inversion et règle de calcul

Soient A et B deux matrices inversibles, alors

$$(A.B)^{-1} = B^{-1}.A^{-1};$$

$$\left(A^{\mathrm{T}}\right)^{-1} = \left(A^{-1}\right)^{\mathrm{T}}$$

Propriété 7 : changement de base

Soit \mathscr{B} et \mathscr{B}' deux bases de E, et P la matrice dont les colonnes sont les coordonnées des vecteurs de \mathscr{B}' exprimées dans la base \(\mathcal{B} \).

Alors, P est inversible et appelée **matrice de passage** de \mathcal{B} vers \mathcal{B}' .

De plus, si M et M' sont les matrices de u respectivement dans \mathscr{B} et \mathscr{B}' , alors

$$M' = P^{-1}.M.P$$

2 — matrices par blocs et sous-espaces stables

Définition : matrices définies par blocs

Soit $(A_{i,j})_{1 \le i \le n, 1 \le i \le n}$ $n \times p$ matrices vérifiant les conditions suivantes :

- \star Pour $i_0 \in [\![1,n]\!]$ fixé, les matrices $(A_{i_0,j})_{1 \le j \le p}$ ont le même nombre de lignes : $l(i_0)$

$$\star \text{ Pour } j_0 \in [\![1,p]\!] \text{ fixé, } (A_{i,j_0})_{1 \leq i \leq n} \text{ ont le même nombre de colonnes} : k(j_0).$$

$$\text{On peut alors écrire une matrice } \star \text{ par blocs } * : \qquad M = \begin{pmatrix} A_{1,1} & \cdots & A_{1,j} & \cdots & A_{1,p} \\ \vdots & & \vdots & & \vdots \\ A_{i,1} & \cdots & A_{i,j} & \cdots & A_{i,p} \\ \vdots & & \vdots & & \vdots \\ A_{i,1} & \cdots & A_{i,j} & \cdots & A_{i,p} \\ \vdots & & \vdots & & \vdots \\ A_{n,1} & \cdots & A_{n,j} & \cdots & A_{n,p} \end{pmatrix}$$

$$\text{On écrira } M = \begin{pmatrix} A_{i,j} \end{pmatrix}_{1 \leq i \leq n, 1 \leq j \leq p} \in \mathcal{M}_{N \times P}(\mathbb{K}), \text{ avec } N = \sum_{i=1}^{n} l(i) \text{ et } P = \sum_{j=1}^{p} k(j).$$

$$= \left(A_{i,j}\right)_{1 \le i \le n, 1 \le j \le p} \in \mathcal{M}_{N \times P}(\mathbb{K}), \text{ avec } N = \sum_{i=1}^{n} l(i) \text{ et } P = \sum_{j=1}^{n} k(j)$$

Propriété 8: opérations par blocs

Les règles de calcul pour les matrices définies par blocs sont formellement les mêmes que les règles de calcul pour les scalaires, c'est-à-dire:

Si
$$\lambda \in \mathbb{K}$$
, $M = \left(A_{i,j}\right)_{1 \leq i \leq n, 1 \leq j \leq p}$, $N = \left(B_{i,j}\right)_{1 \leq i \leq n, 1 \leq j \leq p}$: $M + \lambda N = \left(A_{i,j} + \lambda B_{i,j}\right)_{1 \leq i \leq n, 1 \leq j \leq p}$;

Si
$$M = (A_{i,j})_{1 \le i \le n, 1 \le j \le p}$$
, $N = (B_{i,j})_{1 \le i \le p, 1 \le j \le q} : M.N = (C_{i,j})_{1 \le i \le n, 1 \le j \le q}$ avec $C_{i,j} = \sum_{k=1}^{p} A_{i,k}.B_{k,j}.$

Exemple 1

$$\operatorname{Consid\acute{e}rons} A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}), \text{ et la matrice } M = \overline{\begin{pmatrix} (0) & -A \\ A & (0) \end{pmatrix}} \in \mathcal{M}_4(\mathbb{R}).$$

Alors
$$A^2 = -I_2$$
 (I_2 représente la matrice identité), et $M^2 = \begin{pmatrix} -A^2 & (0) \\ (0) & -A^2 \end{pmatrix} = \begin{pmatrix} I_2 & (0) \\ (0) & I_2 \end{pmatrix} = I_4$.

(Définition : sous-espace stable par un endomorphisme

Soit E un espace vectoriel sur \mathbb{K} , u un endomorphisme de E ($u \in \mathcal{L}(E)$), et F un sous-espace vectoriel de E. On dit que F est stable par u lorsque $u(F) \subset F$.

Remarque: on n'a pas forcément u(F) = F: par exemple, $u(\text{Ker } u) = \{0_F\}$.

Lorsque u(F) = F, on peut dire que F est globalement invariant par u.

 \bigcirc Quelques exemples (2)

- ★ Tout sous-espace de E est stable par toute homothétie λ id $_E$, où $\lambda \in \mathbb{K}$. Réciproquement, on montre qu'un endomorphisme de E qui laisse stables tous les sous-espaces de E est forcément une homothétie.
- \star Ker u et Im u sont stables par u, mais aussi par $u^2 = u \circ u$, $u^3 = u \circ u \circ u$, etc.
- ★ Soit $E = \mathbb{R}[X]$, et l'endomorphisme D défini sur E par D(P) = P'; D laisse stable tous les sous-espaces $\mathbb{R}_n[X]$. Le sous-espace $\mathbb{R}^P[X]$ des polynômes pairs de $\mathbb{R}[X]$ n'est pas stable par D, mais il est stable par $D^2 = D \circ D$.

Définition : endomorphisme induit

Soit *E* un espace vectoriel, $u \in \mathcal{L}(E)$, et *F* un sous-espace vectoriel de *E stable* par *u*.

On peut alors définir un endomorphisme $\hat{u} \in \mathcal{L}(F)$ par $\forall x \in F$, $\hat{u}(x) = u(x) \in F$.

L'endomorphisme \hat{u} est appelé *endomorphisme induit* par u sur F. Une autre notation de \hat{u} est $u_{|F}$.

Remarque: u et \hat{u} sont distincts, bien qu'ils correspondent au même calcul; ils n'ont pas le même ensemble de départ, et \hat{u} peut être injectif sans que u ne le soit.

Exemple 3

Soit le \mathbb{R} -espace vectoriel $E=\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$, et $F=\mathbb{R}[X]$ le sous-espace de E formé des fonctions polynomiales.

Alors $u(f) = x \mapsto f'(x) - 2x f(x)$ définit un endomorphisme de E.

On vérifie aisément que F est stable par u, définissant ainsi un endomorphisme $\hat{u}: \hat{u}(P) = P' - 2XP$.

Or, nous savons que $\forall x \in \mathbb{R}, y'(x) = 2x y(x) \iff \exists \lambda \in \mathbb{R}, \forall x \in \mathbb{R}, y(x) = \lambda \exp(x^2)$; de plus, d'après le théorème des croissances comparées, $h: x \mapsto \exp(x^2)$ n'est pas polynomiale.

Il en résulte que $\operatorname{Ker}(u) = \mathbb{R}.h$ et que $\operatorname{Ker}(\hat{u}) = \{0_E\}$: \hat{u} est donc injective, alors que u ne l'est pas.

De même, on peut montrer que u est surjective, alors que \hat{u} ne l'est pas.

Propriété 9 : stabilité et endomorphismes qui commutent

Soient u et v deux endomorphismes qui commutent, c'est-à-dire que $u \circ v = v \circ u$; alors, le noyau et l'image de u sont stables par v.

Propriété 10: stabilité et matrices diagonales par blocs

Soit E un espace vectoriel, $u \in \mathcal{L}(E)$ et $E = \bigoplus_{i=1}^{p} E_i$ une décomposition en somme directe de E.

On considère une base \mathcal{B} de E adaptée à cette décomposition.

Alors, chacun des sous-espaces E_i est stable par u si, et seulement si, la matrice de M de u dans \mathscr{B} est diagonale par blocs:

$$M = \begin{pmatrix} A_1 & (0) & (0) & \cdots & (0) \\ (0) & A_2 & (0) & & (0) \\ (0) & (0) & A_3 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & (0) \\ (0) & (0) & \cdots & (0) & A_p \end{pmatrix}$$

où $A_i \in \mathcal{M}_{\dim E_i}(\mathbb{K})$ est la matrice de $u_{|E_i}$.

Définition : matrice triangulaire [par blocs]

Soit $M = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée.

On dit que M est **triangulaire supérieure** si $j > i \implies a_{i,j} = 0$, et **triangulaire inférieure** si $i > j \implies a_{i,j} = 0$. On définit de manière analogue une **matrice triangulaire par blocs** (en remplaçant les $a_{i,j}$ par $A_{i,j}$!).

Propriété 11: interprétation d'une matrice triangulaire

Soit $M = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée associée à un endomorphisme u dans la base $\mathcal{B} = (e_1, e_2, \dots, e_n)$.

Alors M est triangulaire supérieure si et seulement si, pour tout $k \in [1, n]$, l'espace $V_k = \text{Vect}(e_1, e_2, ..., e_k)$ est stable par u.

Propriété 12: interprétation d'une matrice triangulaire par blocs

Soit $M = \left(A_{i,j}\right)_{1 \le i,j \le p} \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée, associé à u dans une base \mathscr{B} . On suppose que les blocs diagonaux sont carrés : $\forall k \in [[1, p]], A_{k,k} \in \mathcal{M}_{l(k)}(\mathbb{K}).$

Soit V_k le sous-espace de E correspondant au bloc $A_{k,k}$ dans \mathcal{B} .

Alors M est triangulaire supérieure par blocs, c'est-à-dire $j > i \Longrightarrow A_{i,j} = (0)$ si, et seulement si, pour tout

 $k \in [1, n]$, l'espace $F_k = \bigoplus^{\kappa} V_i$ est stable par u.

3 — Déterminants

Définition et propriété : déterminant d'une matrice

Il existe une unique application det de $\mathcal{M}_n(\mathbb{K})$ dans \mathbb{K} vérifiant les trois propriétés suivantes :

- (i) le déterminant est linéaire par rapport à chacune des colonnes;
- (ii) l'échange de deux colonnes a pour effet de multiplier le déterminant par −1;
- (iii) le déterminant de la matrice unité I_n vaut 1.

Cette application est appelée déterminant.

Interprétation en termes d'opérations de pivot de Gauss

On rappelle qu'il existe trois types d'opérations de pivot de Gauss sur les colonnes C_1, C_2, \dots, C_n d'une matrice A:

- (T) les *transvections*: $C_i \leftarrow C_i + \lambda C_j$ si $\lambda \in \mathbb{K}$, $(i,j) \in [[1,n]]^2$, $i \neq j$; elles laissent le déterminant invariant.
- (E) les *transpositions*: $C_i \leftrightarrow C_j$ si $(i,j) \in [1,n]^2$, $i \neq j$; elles multiplient le déterminant par -1.
- (D) les *dilatations*: $C_i \leftarrow \lambda C_i$ si $\lambda \in \mathbb{K}^*$; elles multiplient le déterminant par λ .

Un pivot de Gauss sur les colonnes d'une matrice A aboutit

- * ou bien à une matrice contenant une colonne nulle (et alors det(A) = 0 d'après (i) ou (ii);
- * ou bien à l'identité I_n (et alors on peut en déduire la valeur non nulle de det(A)).

Propriété 13: déterminant manifestement nul

Le déterminant d'une matrice ayant une colonne nulle, ou deux colonnes égales, ou proportionnelles, est nul.

Propriété 14: propriétés du déterminant de matrices

* $\forall (A, B) \in \mathcal{M}_n(\mathbb{K})^2$,

- $\det(A \times B) = \det(A) \det(B).$
- * Soit $A \in \mathcal{M}_n(\mathbb{K})$, A est inversible si et seulement si $\det A \neq 0$ et alors $\det(A^{-1}) = \frac{1}{\det(A)}$
- * $\forall A \in \mathcal{M}_n(\mathbb{K}), \forall \lambda \in \mathbb{K},$

 $\det(\lambda A) = \lambda^n \det(A).$

* $\forall A \in \mathcal{M}_n(\mathbb{K}),$

- $\det(A^{\mathrm{T}}) = \det(A)$.
- * \mathbf{A} en général, $\det(A+B) \neq \det A + \det B$.

Remarque: La propriété det A^{T} = detA permet d'étendre aux lignes les propriétés et manipulations possibles pour les colonnes dans un déterminant.

Propriété 15 : déterminant par blocs

On considère $(p,q) \in [\![1,n]\!]$ tels que $p+q=n, A \in \mathcal{M}_p(\mathbb{K}), B \in \mathcal{M}_{p,q}(\mathbb{K}), C \in \mathcal{M}_q(\mathbb{K}),$ alors

$$\det\begin{pmatrix} A & B \\ (0) & C \end{pmatrix} = \det A \cdot \det C$$

A Soit $(A, B, C, D) \in \mathcal{M}_n(\mathbb{K})^4$, la formule $\begin{vmatrix} A \\ C \end{vmatrix}$ $\begin{vmatrix} B \\ D \end{vmatrix} = \det A \cdot \det D - \det B \cdot \det C \text{ est fausse en général.}$

Définition : matrice mineure

Soit $A \in M_n(\mathbb{K})$, et $(k, l) \in \{1, \dots n\}^2$; on appelle **matrice mineure** de A attachée au couple (k, l), et on note $A_{k, l}$, la matrice de $M_{n-1}(\mathbb{K})$ obtenue par suppression de la $k^{\text{ème}}$ ligne et de la $l^{\text{ème}}$ colonne.

$$\begin{pmatrix} a_{11} & \cdots & a_{1,l-1} & a_{1,l} & a_{1,l+1} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{k-1,1} & \cdots & a_{k-1,l-1} & a_{k-1,l} & a_{k-1,l+1} & a_{k-1,n} \\ \hline a_{k,1} & \cdots & a_{k,l-1} & a_{k,l} & a_{k-1,l+1} & a_{k-1,n} \\ \hline a_{k+1,1} & \cdots & a_{k+1,l-1} & a_{k+1,l} & a_{k+1,l+1} & a_{k+1,n} \\ \vdots & & \vdots & & \vdots & \vdots \\ a_{n1} & \cdots & a_{n,l-1} & a_{n,l} & a_{n,l+1} & \cdots & a_{n,n} \end{pmatrix} \rightarrow \begin{pmatrix} a_{11} & \cdots & a_{1,l-1} & a_{1,l+1} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots & \vdots \\ a_{k-1,1} & \cdots & a_{k-1,l-1} & a_{k-1,l+1} & a_{k-1,n} \\ \hline a_{k+1,1} & \cdots & a_{k+1,l-1} & a_{k+1,l+1} & a_{k+1,n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n,l-1} & a_{n,l+1} & \cdots & a_{n,n} \end{pmatrix}$$
 matrice de départ A

Propriété 16 : développement par rapport à une ligne ou une colonne

Avec cette notation,

et

$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j})$$
 formule de développement par rapport à la jème colonne
$$\det A = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} \det(A_{i,j})$$
 formule de développement par rapport à la ième ligne

Ceci ramène le calcul d'un déterminant $n \times n$ à celui de n déterminants $(n-1) \times (n-1)$.

Si la colonne ou la ligne choisie est creuse (avec beaucoup de coefficients nuls), cette méthode est beaucoup plus économique.

- Quelques exemples (4) -

* Après la transformation $C_2 \leftarrow C_2 - C_4$ et un développement par rapport à la troisième ligne, devenue creuse :

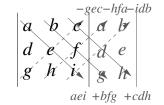
$$\begin{vmatrix} 1 & 1 & 1 & 2 \\ 1 & a & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & -1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 1 & 2 \\ 1 & a - 1 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ \hline 1 & -2 & -1 & 1 \end{vmatrix} = (-1)^{4+3} \begin{vmatrix} 1 & -1 & 1 \\ 1 & a - 1 & 2 \\ 1 & -2 & -1 \end{vmatrix} \begin{vmatrix} L_2 \leftarrow L_2 - L_1 \\ 0 & a & 1 \\ 0 & -1 & -2 \end{vmatrix}$$

On obtient finalement $\begin{vmatrix} a & 1 \\ 1 & 2 \end{vmatrix} = 2a - 1$.

On obtient finalement
$$\begin{vmatrix} a & b & c \\ 1 & 2 \end{vmatrix} = 2a - 1$$
.

* $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} b & c \\ h & i \end{vmatrix} + c \begin{vmatrix} b & c \\ e & f \end{vmatrix} = aei + dhc + gbf - ahf - dbi - gec$

(combinaison linéaire des diagonales : règle de SARRUS.)



* Avec cette règle des diagonales ou de Sarrus, on peut par exemple déterminer l'équation cartésienne du plan vectoriel P de l'espace engendré par les vecteurs (1,1,2) et (1,-1,3):

$$(x,y,z)\in P\Longleftrightarrow \begin{vmatrix} x & 1 & 1\\ y & 1 & -1\\ z & 2 & 3 \end{vmatrix} = 0 \Longleftrightarrow 3x+2y-z-(z)-3y-(-2x)=5x-y-2z=0.$$

Mais dans ce cas, le développement par rapport à la première colonne aurait été tout aussi efficace!

Méthodes de calcul d'un déterminant :

- * Pour n = 2 et n = 3: règle de SARRUS \triangle cette règle n'est pas applicable si $n \ge 4$.
- * Pour tout $n \in \mathbb{N}$: effectuer des opérations de pivot de Gauss, indifféremment sur les lignes et les colonnes, jusqu'à obtenir une matrice triangulaire (éventuellement par blocs).
- * Si on voit apparaître une colonne ou une ligne creuse, on peut utiliser un développement par rapport à cette ligne ou colonne.

Complexité temporelle du calcul du déterminant

- * Le calcul d'un déterminant $n \times n$ en se ramenant à n déterminants mineurs $(n-1) \times (n-1)$, puis à n(n-1)déterminants mineurs $(n-2) \times (n-2)$, etc. aboutit à une somme de n! termes formés de n facteurs, donc n!(n-1) multiplications, ce qui est intolérable pour $n \ge 5$ (calcul humain) ou $n \ge 10$ (ordinateur).
- * Le calcul d'un déterminant $n \times n$ en le décomposant par blocs (un bloc de taille k et un bloc de taille n-kdivise le nombre de calculs précédents par $\binom{n}{k}$.
- * Le calcul d'un déterminant $n \times n$ par pivot de Gauss (ce qui aboutit à une matrice triangulaire) nécessite n(n+1)/2 opérations sur les lignes, donc moins de $n^2(n+1)/2$ multiplications sur les scalaires.

Nombre de multiplications nécessaires au calcul d'un déterminant d'ordre n:

indicipations incoessaines an enterin a un acterialitation a state in t								
	taille	n	3	4	5	10	100	1000
	méthode naïve	n!(n-1)	12	72	480	3.26×10^{7}	9.24×10^{159}	4.02×10^{2570}
	pivot de Gauss	$\lfloor n^3/2 \rfloor$	14	32	63	500	5.10^5	5.10 ⁸

À quoi servent les déterminants?

* En géométrie : vérifier que n vecteurs de \mathbb{K}^n forment une base. Vérifier que quatre points sont coplanaires dans l'espace, etc. Calculer une aire ou un volume. * En algèbre : vérifier l'inversibilité d'une matrice.

Résoudre un système d'équations linéaires (méthode de CRAMER).

Aide à la réduction d'une matrice (voir le chapitre 2).

Calculer la distance d'un vecteur à un sous-espace.

* En analyse : le déterminant peut être utile à la résolution d'un système d'équations différentielles.

<u>4 — Déterminant d'une famille de vecteurs / d'un endomorphisme</u> Définition : déterminant d'un endomorphisme

Soit *E* un espace vectoriel de dimension *n*, muni d'une base $\mathcal{B} = (e_1, \dots, e_n)$, et φ un endomorphisme de *E*. Par définition, le *déterminant de l'endomorphisme* φ est celui de sa matrice dans la base \mathscr{B} .

A Comme det(A) = det(A') si $A \sim A'$, le déterminant de φ ne dépend pas du choix de la base.

Définition : déterminant d'une famille de vecteurs

On considère un espace vectoriel E de dimension n, muni d'une base $\mathcal{B} = (e_1, \dots, e_n)$, et (u_1, \dots, u_n) une famille de n vecteurs de E.

Pour $i \in [[1, n]]$, soit C_i le vecteur-colonne des coordonnées de u_i dans la base \mathscr{B} , et $A \in \mathscr{M}_n(\mathbb{K})$ la matrice dont la $j^{\text{ème}}$ colonne est C_i .

Le *déterminant de la famille* $(u_1, u_2, ..., u_n)$ est par définition, celui de la matrice A, c'est-à-dire celui de l'endomorphisme défini par $\varphi(e_k) = u_k$ pour tout $k \in [1, n]$.

Propriété 17: du déterminant d'un endomorphisme

soit φ et ψ deux endomorphismes, et $\lambda \in \mathbb{K}$:

- \blacktriangleright det $(\varphi) = 0 \iff \varphi$ est un automorphisme, et det $(\varphi^{-1}) = \frac{1}{\det \varphi}$;
- $ightharpoonup \det(\varphi \circ \psi) = \det(\varphi) \det(\psi);$
- \blacktriangleright det($\lambda \varphi$) = λ^n det(φ).

5 — Matrices semblables

Définition : matrices semblables

Soit $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$. On dit que A et B sont semblables, et on note $A \sim B$, lorsque

 $\exists P \in \operatorname{GL}_n(\mathbb{K}), \quad B = P^{-1}.A.P$ c'est-à-dire

A et B représentent le même endomorphisme dans deux bases différentes.

Propriété 18: similitude et déterminant

Soit $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$.

Si $A \sim B$, alors det(A) = det(B).

A La réciproque est fausse.

Propriété 19: matrices semblables

- ightharpoonup Si $\lambda \in \mathbb{K}$, $A \sim \lambda I_n \Longleftrightarrow A = \lambda I_n$;
- Deux matrices déduites l'une de l'autre par pivot de Gauss ne sont pas semblables en général.

Définition : trace d'une matrice carrée

Soit $A = \left(a_{i,j}\right)_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{K})$, la **trace** de A est la somme des éléments diagonaux, c'est-à-dire $\operatorname{tr}(A) = \sum_{i=1}^{n} a_{k,k}$

Propriété 20 : propriétés de la trace

Pour tout couple $(A, B) \in \mathcal{M}_n(\mathbb{K})$, et pour tout $\lambda \in \mathbb{K}$:

* $\operatorname{tr}(\lambda A + B) = \lambda \operatorname{tr}(A) + \operatorname{tr}(B)$

- $* \operatorname{tr}(A^{\mathrm{T}}) = \operatorname{tr}(A)$
- * tr(A.B) = tr(B.A), \triangle mais en général $tr(A.B) \neq tr(A)tr(B)$.
- * Si $A \sim B$, tr(A) = tr(B), \triangle mais la réciproque est fausse!

Définition : trace d'un endomorphisme

soit $u \in \mathcal{L}(E)$, associé à une matrice A, **la trace de** u est par définition la trace de A.

Remarque: Cette définition a un sens car la trace de la matrice de u est invariante par changement de base.